STABILITY OF GEOLOGICAL MEDIUM UNDER BENDING LOADS AND CONCENTRATED ENERGY IMPULSES

The article describes the assessment procedure for earth’s crust blocks approximated by plates with a view to selecting the most stable site for hot waste disposal. A structural block is understood as a thin plate layer with areal size larger than its thickness. The governing role is given to geodynamic zoning based on the modeling of the stress state in the top layer of the crust. Hazardous zone in rock mass are revealed by means of stress concentration estimate in the frame of the plane elasticity in concert with development of mechanical–mathematical and computing aids for modeling bending of a plate layer based on the theories of Kirchhoff and Mindlin–Reissner. The obtained analytical solution of the Kirchhoff plate bending under point (instantaneous) energy impulse and the robust Mindlin–Reissner plate finite elements expand capabilities of stress state calculation in a heterogeneous geological medium, and be a framework for new computational program products.


Acknowledgements: The study was supported y the Russian Science Foundation, Project No. 1517-10016, and by the Russian Foundation for Basic Research, Project No. 18-35-00260.


For citation: Kolesnikov IYu., Tatarinov VN. Stability of geological medium under bending loads and concentrated energy impulses. MIAB. Mining Inf. Anal. Bull. 2019;(9):149-159. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-149-159.

Keywords

Geological medium stability, underground isolation of radioactive waste, Kirchhoff thin plate bending, Mindlin–Reissner medium-thickness plate bending, exact analytical solution, finite element method, finite elements.

Issue number: 9
Year: 2019
ISBN: 0236-1493
UDK: 621.039.74
DOI: 10.25018/0236-1493-2019-09-0-149-159
Authors: Kolesnikov I. Yu., Tatarinov V. N.

About authors: I.Yu. Kolesnikov, Dr. Sci. (Phys. Mathem.), Leading Researcher, e-mail: kol@wdcb.ru, V.N. Tatarinov, Dr. Sci. (Eng.), Head of Laboratory, Schmidt Institute of Physics of Earth of Russian Academy of Sciences, 123242, Moscow, Russia, e-mail: victat@wdcb.ru, Geophysical Center, Russian Academy of Sciences, 119296, Moscow, Russia. Corresponding author: V.N. Tatarinov, e-mail: victat@wdcb.ru.

REFERENCES:

1.        Anderson E. B., Belov S. V., Kamnev E. N. Podzemnaya izolyatsiya radioaktivnykh otkhodov [Underground isolation of radioactive waste], Moscow, Izd-vo «Gornaya kniga», 2011, 592 p.

 

2.        Trebovaniya k razvedke mesta dlya zakhoroneniya VAO v skal'noy gornoy porode (ASTER) [Requirements for exploration of the place for burial of VAO in the rock (ASTER)], Moscow, DBE Tekhnolodzhi GmbKH, VNIPI PT, 2005, 473 p. [In Russ].

 

3.        Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R., Zlotniki Zh., Bonnin Zh. Mathematical methods of geo-information science. Part III: Fuzzy comparisons and identification anomalies in temporal series. Kibernetika i sistemnyy analiz. 2008. Vol. 44, no 3, pp. 3—18. [In Russ].

 

4.        Tatarinov V. N., Morozov V. V., Kolesnikov I. Yu., Kagan A. I., Tatarinova T. A. Stability of geological environment as the basis of safe underground insulation of radioactive waste and spent fuel. Nadezhnost' i bezopasnost' energetiki. 2014, no 1(24), pp. 25—29. [In Russ].

 

5.        Kamnev E. N., Morozov V. N., Tatarinov V. N., Kaftan V. I. Geodynamics aspects of investigations in underground research laboratory (Niznekansk massif). Eurasian mining. 2018. No 2. pp. 11—14. 2018. DOI: 10.17580/em.2018.02.03.

 

6.        Kolikov K. S., Manevich A. I., Mazina E. I., Stress-strain analysis in coal massif under traditional mining with full caving and in technology with backfilling. Eurasian mining. 2018. No 2. pp. 15—17. DOI: 10.17580/em.2018.02.04.

 

7.        Batugina I. M., Petukhov I. M. Geodinamicheskoe rayonirovanie mestorozhdeniy pri proektirovanii i ekspluatatsii rudnikov [Geodynamic zoning of deposits in the design and operation of mines], Moscow, Nedra, 1988, 166 p.

 

8.        Kolesnikov I. Yu. Formation of plate-like blocks with regard to angles. Trudy 16-y Mezhdunarodnoy konferentsii po teorii obolochek i plastin. Vol. 3. N. Novgorod, Izd-vo Nizhegorodskogo universiteta, 1994, pp. 114—117. [In Russ].

 

9.        Vasil'ev V. V. Torsion of a square isotropic plate under angular forces and distributed moments. Izvestiya RAN. Mekhanika tverdogo tela. 2017, no 2, pp. 20—31. [In Russ].

 

10.     Kolesnikov I. Yu. The Kirchhoff law of correlation of field functions in finite elements of the Mindlin–Reissner plates through shape function control. Materialy XXI Vserossiyskoy konferentsii

 

«Teoreticheskie osnovy konstruirovaniya chislennykh algoritmov i reshenie zadach matematicheskoy fiziki», posvyashchennoy pamyati K.I. Babenko], Moscow, Institut prikladnoy matematiki RAN im. M.V. Keldysha, 2016, pp. 43—44. [In Russ].

 

11.     Boroomand B., Zienkiewicz O. C. Recovery by equilibrium in patches (REP). Int J Numer Methods Eng. 1997, No 40(1): pp. 137—164.

 

12.     Maunder E. A. W., Moitinho de Almeida J. P. Recovery of equilibrium on star patches from conforming finite elements with a linear basis. Int J Numer Methods Eng. 2012. No 89(12). pp. 1497—1526.

 

13.     Moitinho de Almeida J. P., Maunder E. A. W. Equilibrium Finite Element Formulations. Hoboken, NJ: John Wiley & Sons. 2017. 296 p.

 

14.     Moitinho de Almeida J. P., Maunder E. A. W. Recovery of equilibrium on star patches using a partition of unity technique. Int J NumerMethods Eng. 2017. No 79, pp. 1493—1516.

 

15.     Boroomand B., Ghaffarian M. On application of two superconvergent recovery procedures to plate problems. Int J Numer Methods. 2018. No 61(10), pp. 1644—1673.

 

16.     Diez P., Rodenas J. J., Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng. 2017. No 69(10), pp. 2075—2098.

 

17.     Ubertini F. Patch recovery based on complementary energy. Int J Numer Methods Eng. 2017. No 59(11), pp. 1501—1538.

 

18.     Kvamsdal T., Okstad K. M. Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J NumerMethods Eng. 2018. No 42(3), pp. 443— 472.

Subscribe for our dispatch