APPLICATION OF POLYMER EMULSION IN DUST EMISSION CONTROL DURING COAL HAULAGE

The article discusses basic measures currently in use in dust suppression during coal haulage. It is shown that one of the promising methods of coal dust emission control is chemical agents of different compositions. It is specified that estimation of efficiency of chemical agents lacks proved procedures and norms. This article presents the data on pilot treatment of free-burning coal on the belt of the crushing and blending plant by polymer emulsion to reduce coal dusting. The efficiency of the coal dust emission control was estimated by measuring contents of suspended matter (inorganic dust), as well as nitric oxide, nitrogen dioxide and carbon oxide of air in the working zone of coal loading/unloading or fill. The results show that coal treatment by polymer emulsion reduces the air content of suspended matters at the points of coal rehandling immediately after drying of the solution and even a month after the treatment owing to the polymeric coating resistant to climate effects. The treatment with polymer emulsion leads to no worsening of basic coal qualities. The obtained data imply that application of polymer emulsion reduces the content of suspended matter in air at the points of coal rehandling without deterioration of coal quality.

 

For citation: Epshtein S. A., Gavrilova D. I., Zavelev I. G., Shamshin S. A., Yurin E. Yu. Application of polymer emulsion in dust emission control during coal haulage. MIAB. Mining Inf. Anal. Bull. 2019;(10):5-15. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-5-15.

Keywords

Сoal dust, dust emission control measures, polymer emulsion, belt, crushing and blending plant, rehandling, storage, outdoor storage, coal quality indices.

Issue number: 10
Year: 2019
ISBN: 0236-1493
UDK: 622.807.2
DOI: 10.25018/0236-1493-2019-10-0-5-15
Authors: Epshtein S. A., Gavrilova D. I., Zavelev I. G., etc.

About authors: S.A. Epshtein (1), Dr. Sci. (Eng.), Senior Researcher, Head of Laboratory, e-mail: apshtein@yandex.ru; D.I. Gavrilova (1), Engineer, I.G. Zavelev (2), Cand. Sci. (Eng.), Deputy General Director, e-mail: oxtservis@gmail.com, S.A. Shamshin (2), Deputy General Director, e-mail: oxtservis@gmail.com, E.Yu. Yurin, Director, Razrez Arshanovsky LLC, 655682, Arshanovo, Altai district, Republic of Khakassia, Russia, 1) National University of Science and Technology «MISiS», 119049, Moscow, Russia, 2) LLC «ORGHIM-Technology», 117292, Moscow, Russia. Corresponding author: S.A. Epshtein, e-mail: apshtein@yandex.ru.

REFERENCES:

1.     Rout T. K., Masto R. E., Padhy P. K., George J., Ram L. C., Maity S. Dust fall and elemental flux in a coal mining area. Journal of Geochemical Exploration, 2014, Vol. 144, No PC, pp. 443—455. DOI: 10.1016/j.gexplo.2014.04.003.

2.     Tang Z., Chai M., Cheng J., Jin J., Yang Y., Nie Z., Huang Q., Li Y. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety, 2017. Vol. 138, pp. 83—91. DOI: 10.1016/j.ecoenv.2016.11.003.

3.     Dilip Kumar, Deepak Kumar Sustainable Management of Coal Preparation. Chapter 12 — Dust Control, 2018, pp. 265—278. https://doi.org/10.1016/B978-0-12-812632-5.00012-4.

4.     Skopintseva O. V., Buzin A. A. Dusting air loading and transportation of solid mineral resources. Gornyy informatsionno-analiticheskiy byulleten’. 2019. Special edition 10, pp. 116— 121. DOI: 10.25018/0236-1493-2019-5-10-116-121. [In Russ].

5.     Arkhipov V. A., Paleev D. Y., Patrakov Y. F., Usanina A. S. Coal dust wettability estimation. Journal of Mining Science, 2014, Vol. 50, pp. 587—594. DOI: 10.1134/S1062739114030193.

6.     Xu C., Wang D., Wang H., Zhang Y., Dou G., Wang Q. Influence of gas flow rate and sodium carboxymethylcellulose on foam properties of fatty alcohol sodium polyoxyethylene ether sulfate solution. Journal of Dispersion Science and Techology, 2017, Vol. 38, pp. 961—966. DOI: 10.1080/01932691.2016.1216438.

7.     RD 34.44.101-96 Tipovaya instruktsiya po khraneniyu ugley, goryuchikh slantsev i frezernogo torfa na otkrytykh skladakh elektrostantsiy [RD 34.44.101—96 Typical instructions for the storage of coal, oil shale and milled peat in open warehouses of power plants], Moscow, SPO ORKRES, 1997, pp. 34.

8.     Wang N., Nie W., Cheng W., Liu Y., Zhu L., Zhang L. Experiment and research of chemical de-dusting agent with spraying dust-settling. Procedia Engineering, Elsevier, 2014, Vol. 84. pp. 764—769. DOI: 10.1016/j.proeng.2014.10.494.

9.     Ding C., Nie B., Yang H., Dai L., Zhao C., Zhao F., Li H. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution. Procedia Engineering, Elsevier, 2011, Vol. 26. pp. 1314—1321. DOI: 10.1016/j.proeng.2011.11.2306.

10.    Xi Z., Feng Z., Li A. Synergistic coal dust control using aqueous solutions of thermoplastic powder and anionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, Vol. 520, pp. 864—871. DOI: 10.1016/j.colsurfa.2017.02.072.

11.    Huang Q., Honaker R. Recent trends in rock dust modifications for improved dispersion and coal dust explosion mitigation. Journal of Loss Prevention in the Process Industries, 2016, Vol. 41, pp. 121—128. DOI: 10.1016/j.jlp.2016.03.009.

12.    Zhou Q., Qin B., Ma D., Jiang N. Novel technology for synergetic dust suppression using surfactant-magnetized water in underground coal mines. Process Safety and Environmental Protection, 2017, Vol. 109, pp. 631—638. DOI: 10.1016/j.psep.2017.05.013.

13.    Fan T., Zhou G., Wang J. Preparation and characterization of a wetting-agglomerationbased hybrid coal dust suppressant. Process Safety and Environmental Protection, 2018, Vol. 113, no 1, pp. 282—291. DOI: 10.1016/j.psep.2017.10.023.

14.    Xi Z., Jin L., Richard Liew J. Y., Li D. Characteristics of foam sol clay for controlling coal dust. Powder Technology, 2018, Vol. 335, pp. 401—408. DOI: 10.1016/J.POWTEC.2018.05.037.

15.    Guo Q., Ren W., Shi J. Foam for coal dust suppression during underground coal mine tunneling. Tunnelling and Underground Space Technology, 2019, Vol. 89, pp. 170—178. DOI: 10.1016/J.TUST.2019.04.009.

16.    Kornev A. V., Korshunov G. I., Korneva M. V. Modern methods of estimation wetting ability mine compositions for dust control. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no S5—1, pp. 93—102. [In Russ].

17.    Howard W. Kilau, Jon I. Voltz Synergistic wetting of coal by aqueous solutions of anionic surfactant and polyethylene oxide polymer. Colloids and Surfaces, 1991, Vol. 57, no 1, pp. 17— 39. https://doi.org/10.1016/0166-6622(91)80177-P.

18.    Pozdnyakov G. A., Tret'yakov A. V., Garavin V. YU., Novosel'tsev A. I. Wetting dust control requirements in coal and mining industry. Bezopasnost' truda v promyshlennosti. 2013, no 10, pp. 36—39. [In Russ].

19.    Korshunov G. I., Mazanik E. V., Erzin A. Kh., Kornev A. V. Efficiency of surfactants using for coal dust prevention. Gornyy informatsionno-analiticheskiy byulleten’. 2014. Special edition 3, pp. 55—61. [In Russ].

20.    Pozdnyakov G. A., Tret'yakov A. V., Malyshev A. V., Garavin V. Yu. Foam aerosol system for dust suppression at conveyor transport and the system efficiency. Gornaya promyshlennost'. 2014, no 3(115), pp. 82. [In Russ].

Subscribe for our dispatch