The most expedient approach to development of placers enclosed in clay host rock is jetting. The jetting efficiency can be improved using various structural techniques and technologies. The pressure flow practice widely involves ejection of abrasives. For instance, hydro-abrasive cutting is based on this principle. However, hydro-abrasive cutting features small diameters of jets, considerable pressure heads and tight spacing to a treated object. The use of air ejection in the pressure flow in the jet gun is known in mining, though there is no data on ejection of solid particles. Accordingly, this study aims to determine efficiency of ejection of solid abrasive particles in the pressure flow in the jet gun for development of rock mass with high content of clay through experimentation at a scale of 1: 10 on a special test bench and mathematical modeling using the test results. The experiments show the increase in the jetting efficiency by 4.8–7.4 times. The mathematical model constructed using the experimental data allow predicting efficiency of jetting with ejection of solid abrasive particles at varied diameters of jet nozzle and jet–face angles.


Acknowledgements: This study was supported by the Russian Foundation for Basic Research, Project No. 19-35-90112.

For citation: Shkaruba N. A., Kislyakov V. E., Katyshev P. V. Modeling clay rock jetting with ejection of solid abrasive particles . MIAB. Mining Inf. Anal. Bull. 2019;(10):79-89. [In Russ]. DOI: 10.25018/02361493-2019-10-0-79-89.


Mineral deposit, jet gun, jetting, clay rock mass, solid abrasive particles, jetting efficiency, ejection, jet impact, modeling, mathematical model.

Issue number: 10
Year: 2019
ISBN: 0236-1493
UDK: 622.236.52
DOI: 10.25018/0236-1493-2019-10-0-79-89
Authors: Shkaruba N. A., Kislyakov V. E., Katyshev P. V.

About authors: N.A. Shkaruba, Graduate Student, e-mail:, V.E. Kislyakov, Dr. Sci. (Eng.), Professor, P.V. Katyshev, Cand. Sci. (Eng.), Assistant Professor, Siberian Federal University, 660025, Krasnoyarsk, Russia. Corresponding author: N.A. Shkaruba, e-mail:


1. Khnykin V. F. Razrushenie gornykh porod gidromonitornymi struyami na otkrytykh razrabotkakh [The destruction of rocks by jetting jets in open pit mining], Moscow, Nauka, 1969, 150 p.


2. Savchenko N. V., Yakhno O. M., Shkarabura N. G. Influence of parameters of jet-forming devices on jet compactness. Protsesi mekhanichnoї obrobki v mashinobuduvanni. 2006, no 3, 12 p.


3. Poklonov D. A., Litvin Yu. I., Protasov S. I. Determination of the required diameters of the nozzles of hydraulic monitors taking into account the operating mode of the pumping station. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2004, no 3 (40), 3 p. [In Russ].


4. Mizurev V. Yu. Theoretical analysis of the means of water collection of high-pressure selfpropelled hydromonitors. Zapiski Gornogo instituta. 2003. Vol. 155, part 2, 2 p. [In Russ].


5. Yaltanets I. M., Egorov V. K. Gidromekhanizatsiya: Spravochnyy material [Hydromechanization: Reference material], Moscow, MGGU, 1999, 338 p.


6. Astakhov Yu. P., Korolev A. N., Zhikharev M. B., Volkov S. M. Patent RU 2508189, 25.10.2012.


7. David R. Pearl Patent DE 2813499А1, 7.10.1977. Fluidstrahl-vorrichtung zum schneiden von flachmaterial.


8. Shpilev V. V., Reshetnikov M. K., Kapul'nik S. I., Bereda N. N., Kutin A. S. Patent RU 2466008, 17.03.2011.


9. Sazonov D. Yu. Determination of rational ranges of change in the modes of hydroabrasive cutting of materials. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2010, no 2—2, 7 p. [In Russ].


10. Merzlyakov V. G. Hydrojet technologies in mining: the main results of scientific research. Gornoe oborudovanie i elektromekhanika. 2018, no 2, 5 p. [In Russ].


11. Merzlyakov V. G., Baftalovskiy V. E., Beydinov V. N. Experience in the use of high-pressure hydraulic jets in creating effective means of rock destruction. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011, no 4 (4), 2 p. [In Russ].


12. Merzlyakov V. G., Baftalovskiy V. E. Establishment of rational parameters, development and creation of tools for hydroabrasive cutting of hard materials. Gornoe oborudovanie i elektromekhanika. 2008, no 4, 4 p. [In Russ].


13. Merzlyakov V. G., Kuz'min I. A., Ivanushkin I. V. Hydromechanical destruction of rocks. Gornyy informatsionno-analiticheskiy byulleten’. 1999, no 1, 3 p. [In Russ].


14. Zhabin A. B., Polyakov A. V., Sarychev V. I., Khachaturyan V. G. Destruction of combustible shales by high-speed water jets. Gornoe oborudovanie i elektromekhanika. 2017, no 7, 4 p. [In Russ].


15. Zhabin A. B., Averin E. A. Systematization of the parameters of the process of erosion of rocks under the action of hydro-abrasive jets. Gornoe oborudovanie i elektromekhanika. 2015, no 4, 3 p. [In Russ].


16. Averin E. A., Zhabin A. B., Polyakov V. A., Shchegolevskiy M. M. Analysis and refinement of the analytical method for calculating hydro-abrasive erosion of rocks. Gornoe oborudovanie i elektromekhanika. 2018, no 2, 8 p. [In Russ].


17. Zhabin A. B., Averin E. A. The simplest analytical method for calculating erosion of rocks under the action of a hydroabrasive jet. Gornoe oborudovanie i elektromekhanika. 2015, no 5, 4 p. [In Russ].


18. Pushkarev A. E., Golovin K. A., Naumov Yu. N. The choice of a method to substantiate the characteristics of high pressure water sources. Problemy razrabotki mestorozhdeniy poleznykh iskopaemykh Tsentral'nogo regiona Rossiyskoy Federatsii. Abstracts of the 1st Regional conference. Tula, 1998, pp. 79. [In Russ].


19. Pushkarev A. E., Zhabin A. B., Golovin K. A. Study of the influence of the distance from the slice of the hydro-abrasive cutter collimator to the surface of the rock to be destroyed on the effectiveness of the gap formation process. Nauka i ekologicheskoe obrazovanie. Praktika i perspektivy. Abstracts of the 1st International conference on ecology and life safety. Tula, 1997, pp. 189. [In Russ].


20. Liu S., Liu X., Chen J., Lin M. Rock breaking performance of a pick assisted by high-pressure water jet under different configuration modes. Chinese Journal of Mechanical Engineering. 2015. Vol. 28. No. 3. Pp. 607—617. DOI: 10.3901/CJME.2015.0305.023.


21. Liu X., Liu S., Li L., Cui X. Experiment on conical pick cutting rock material assisted with front and rear water jet. Advances in Materials Science and Engineering, 2015, 9 p. DOI: 10.1155/2015/506579.


22. Liu S., Chen J., Liu X. Rock breaking by conical pick assisted with high pressure water jet. Advances in Mechanical Engineering, 2014, 9 p. DOI: 10.1155/2014/868041.


23. Song D., Wang E., Liu Z., Liu X., Shen R. Numerical simulation of rock-burst relief and prevention by water-jet cutting. International Journal of Rock Mechanics & Mining Sciences, 2014, рр. 318—331. DOI: 10.1016/j.ijrmms.2014.05.015.


24. Song D., Wang E., Xu J., Liu X., Shen R., Xu W. Numerical simulation of pressure relief in hard coal seam by water jet cutting. Geomechanics and Engineering, 2015, рр. 495—510. DOI: 10.12989/gae.2015.8.4.495.


25. Wen-tao L., Xiao-yu D. Study on flow field characteristics of nozzle water jet in hydraulic cutting. IOP Conference Series: Earth and Environmental Science, 2017. DOI: 10.1088/1755- 1315/81/1/012167.


26. Malukhin N. G., Drobadenko V. P, Klochkov N. N., Timoshenko S. V. Improving the efficiency of the GMD-350 hydro-monitor when mining amber-bearing clay. Gornyy informatsionnoanaliticheskiy byulleten’. 2010, no 12, 5 p. [In Russ].


27. Kislyakov V. E., Shkaruba N. A., Kalmakov M. V., Ros'yanskiy D. S., Kilin D. E., Margotnov A. V., Trifonov E. N., Aksamentov N. A. Patent RU 169574, 23.08.2016.


28. Shkaruba N. A., Kislyakov V. E., Nafikov R. Z. Patent application RU 2018147682, 28.12.2018.

Subscribe for our dispatch