This article presents the experimental findings to assess the consecutive series of cyclic impact in one and two directions of axial compression on the strength and acoustic properties of limestone samples collected in the Kasimov Field. The velocities of elastic longitudinal and transverse waves, acoustic quality factor (Q-factor), dynamic elasticity modulus, and strength were used as information-bearing parameters. The information-bearing parameters vary greatly at the range of 50—100 loading cycles, and then they normalize. Analysis of the strength's dependence on the number of cycles M indicates its decrease during the first 50 cycles of loading, whereby the strength normalizes as the M value rises. At that, the strength of samples exposed to impact in both directions was higher than that of the samples loaded in one direction. The obtained dependences of acoustic parameters on the number of cycles M are approximated by the exponential functions of y = a0 + a1exp(–x/a2). Recording the load and the sample longitudinal deformation helped calculate the variations of the differential modulus of deformation Ed. The behavior of the Ed curve at the uniaxial cyclic loading is distinguished by its smooth ascendancy and subsequent increment at a constant speed. The Ed growth rate at re-loading in the perpendicular direction is significantly lower than at the first loading direction. variations during the first loading range from 2 to 10%, and these variations are lower under biaxial loading, which are 1,5 to 2%. When these findings are applied in practice, the bior multi-axial cyclic loadings may be recommended for use where the goal is to retain the strength. In turn, the uniaxial loadings may be recommended where the fastest strength reduction is required.


Acknowledgements: The reported study was funded by RFBR according to the research project No 17-05-00570.

For citation: Voznesenskii A. S., Krasilov M. N., Kutkin Ya. O., Tavostin M. N. Peculiarities of the impact of consecutive periodic biaxial cyclic loading on the strength and acoustic properties of limestone. MIAB. Mining Inf. Anal. Bull. 2019;(10):117-130. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-117-130.


Rocks, fatigue, strength, regularities, influence, cyclic, impact, acoustic, properties, deformation.

Issue number: 10
Year: 2019
ISBN: 0236-1493
UDK: 552.541:552.08
DOI: 10.25018/0236-1493-2019-10-0-117-130
Authors: Voznesenskii A. S., Krasilov M. N., Kutkin Ya. O., Tavostin M. N.

About authors: A.S. Voznesenskii (1), Dr. Sci. (Eng.), Professor, e-mail:, M.N. Krasilov (1), Graduate Student, Ya.O. Kutkin (1), Cand. Sci. (Eng.), Assistant Professor, M.N. Tavostin, Cand. Sci. (Eng.), Senior Researcher, LLC «Gasprom geotechnology», 123290, Moscow, Russia, 1) National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: A.S. Voznesenskii, e-mail:


1.     Vinogradov Yu. I., Hohlov S. V., Anikin V. V. Methodology for assessing the effectiveness of crushing a rock massif by various types of explosives. Izvestiya TulGU. Nauki o Zemle. 2018. Vyp. 2, pp. 214—221. [In Russ].

2.     Kononenko V. N., Halkechev K. V. Resonant destruction of rocks during crushing and grinding. Gornyy informatsionno-analiticheskiy byulleten’. 2010, no 1, pp. 231—235. [In Russ].

3.     Sinev S. V. Mechanisms, methods and methods of rock destruction in roller drilling. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 1, pp. 149—159. [In Russ].

4.     Vozdvizhenskii B. I., Sidorenko A. K., Skornyakov A. L. Sovremennye sposoby bureniya skvazhin. 2-e izd. [Modern drilling methods, pp. 2nd edition], Moscow, Nedra, 1978, 342 p.

5.     Novinkov A. G., Protasov S. I., Samusev P. A. Seismic safety of underground mining during blasting on the earth's surface. Labor safety in industry 2018, no 8, pp. 64—68. DOI: 10.24000/ 0409-2961-2018-8-64-68. [In Russ].

6.     Viktorov S. D., Zakalinskij V. M. The development of ideas for improving the explosive destruction of rock masses is the basis of progress in mining. Zapiski Gornogo instituta, 2014. Vol. 210, pp. 30—36. [In Russ].

7.     Tulebaev K. K. The destruction of the free surface of a rock mass under the action of seismic waves. Vzryvnoe delo, 2012, no 107—64, pp. 289—295. [In Russ].

8.     Celma Cervera C., Jelagin D., Partl M. N., Larsson P. L. Contact-induced deformation and damage of rocks used in pavement materials. Material Design [Internet]. 2017 Nov [cited 2019 Jun 12]; 133:255-65. Available from:

9.     Osinovskaya V. A. Impact of vibration of non-rigid pavements on their strength. Online journal «Naukovedenie». 2014. No 5. Available at: (accessed 10.07.2019). [In Russ].

10.    Rukovodstvo po raschetu zdanii i sooruzhenii na deistvie vetra [Guide to the calculation of buildings and structures on the action of the wind], Moscow, Stroiizdat, 1978, 216 p. [In Russ].

11.    Cerfontaine B., Collin F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mech Rock Eng, 2018. 51:391-414. DOI: 10.1007/ s00603-017-1337-5.

12.    Braunagel M. J., Griffith W. A. The Effect of Dynamic Stress Cycling on the Compressive Strength of Rocks. Geophysical Research Letters 2019 Jun 14, 78, 14, pp. 416—426.

13.    Papuga, J., Fojtík, F. Multiaxial fatigue strength of common structural steel and the response of some estimation methods. International Journal of Fatigue 2017, 104, pp. 27—42, DOI: 10.1016/j.ijfatigue.2017.07.001.

14.    Jamali S., Hashemolhosseini H., Baghbanan A., Khoshkam M., Haghgouei H. Evaluating Fatigue in Crystalline Intact Rocks under Completely Reversed Loading. Geotechnical Testing Journal, 2017, Vol. 40, no 5, pp. 789—797, DOI:

15.    Wang S., Xu W., Sun M., Wang W. Experimental investigation of the mechanical properties of fine-grained sandstone in the triaxial cyclic loading test. Environmental Earth Science [Internet]. 2019 Jul 16 [cited 2019 Aug 13];78(14):416. Available from: http://link.springer. com/10.1007/s12665-019-8437-3.

16.    Tikhotskii S. A., Fokin I. V., Bayuk I. O. Comprehensive laboratory tests of core in CGI IFZ RAS. Nauka i tekhnologicheskie razrabotki. 2017, Vol. 96, no 2, pp. 17—32. [In Russ].

17.    Shkuratnik V. L., Filimonov Y. L., Kuchurin S. V. Acoustic-emissive memory effect in coal samples under triaxial axial-symmetric compression. Journal of Mining Science, 2006, 42, no 3, pp. 203—209.

18.    Damaskinskaya E. E., Panteleev I. A., Gafurova D. R., Frolov D. I. Structure of a Deformed Inhomogeneous Material on the Data of Acoustic Emission and X-Ray Computer Microtomography, Phys. Solid State, 2018, vol. 60, 7, pp. 1363—1367. DOI: S1063783418070077.

19.    Voznesenskii A. S., Krasilov, M. N., Kutkin, Y. O., Komissarov A. A. Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor. International Journal of Fatigue, 2015, 77, pp. 194—198, DOI: 10.1016/j.ijfatigue.2015.02.012.

20.    Voznesenskii A. S., Krasilov, M. N., Kutkin, Y. O., Tavostin, M. N., Osipov, Y. V. Features of interrelations between acoustic quality factor and strength of rock salt during fatigue cyclic loadings. International Journal of Fatigue, 2017, 97, pp. 70—78, DOI: 10.1016/j.ijfatigue.2016.12.027.

21.    Voznesenskii A. S., Kutkin Y. O. Krasilov M. N., Komissarov, A. A. The influence of the stress state type and scale factor on the relationship between the acoustic quality factor and the residual strength of gypsum rocks in fatigue tests. International Journal of Fatigue, 2016, 3, pp. 53—58.

22.    Soprotivlenie ustalosti. Osnovnye terminy, opredeleniya i oboznacheniya, GOST 2320778 [Fatigue resistance. Key terms, definitions and designations, State Standart 23207-78], Moscow, Standarty, 1981, 48 p. [In Russ].

Subscribe for our dispatch