DESIGN RATIONALE FOR ENGINEERING MULTIPURPOSE BENCH FOR PHYSICAL SIMULATION OF GEOMECHANICAL PROCESSES IN SECONDARY STRESS FIELDS UNDER CONDITIONS OF MINING WITH CONVERGENT GEOTECHNOLOGIES

By way of experimental validation of general approaches to creation and design of a convergent mining technology, a set of theoretical research and virtual experiments is implemented using physical and numerical models with Map3D software. In mineral mining with convergent geotechnologies, for instance, when constructing frame-like or honeycomb geotechnical structures in rock mass, the stress state of the host rocks will change in the course of accessing, heading and stoping. The changes consist in the increase in the shearing stresses and, accordingly, in deformation of separate elements and whole structures. Thus, the level of the changes is to be determined at high reliability. The physical simulation methods currently in application in research work are reviewed. Considering defined advantages and disadvantages, a method is developed for physical modeling of natural-andtechnical systems using additive technologies and making physical models of rocks with regard to the theories of similarity and dimension. The case-study of the physical model and numerical model calibration in detection of damaged rock zones around mine openings and stopes is presented.

 

Acknowledgements: The study was supported by the Russian Science Foundation, Project No. 19-17-00034. Project Manager Dr Tech Sci, Prof RAS Eremenko V. A. and executives—the authors of this article— express their gratitude to Technical Officer of Russol Gramma R. V. and Director of the Sol-Ilets Mine Duzhkin D. V. for the provision of rock salt (halite) blocks for physical simulation of geotechnical systems and for laboratory research.


For citation: Vysotin N. G., Kosyreva M. A., Leyzer V. I., Aksenov Z. V. Design rationale for engineering multipurpose bench for physical simulation of geomechanical processes in secondary stress fields under conditions of mining with convergent geotechnologies. MIAB. Mining Inf. Anal. Bull. 2019;(10):131-145. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-131-145.

Keywords

Convergent mining technologies, geotechnical systems, physical and numerical modeling, modeling with equivalent materials, theories of similarity and dimension, stresses, strains, damaged rock zone DRZ, Map3D.

Issue number: 10
Year: 2019
ISBN: 0236-1493
UDK: 622.831; 622.2; 622.235
DOI: 10.25018/0236-1493-2019-10-0-131-145
Authors: Vysotin N. G., Kosyreva M. A., Leyzer V. I., Aksenov Z. V.

About authors: N.G. Vysotin, Assistant, e-mail: kalgani@yandex.ru, M.A. Kosyreva, Laboratory Assistant, e-mail: marinkosyreva@gmail.com, V.I. Leyzer, Student, e-mail: vlad.leizer@yandex.ru, Z.V. Aksenov, Graduate Student, e-mail: aksenov.zakhar@yandex.ru, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: N.G. Vysotin, e-mail: kalgani@yandex.ru.

REFERENCES:

1.     Galchenko Yu. P., Eremenko V. A., Myaskov A. V., Kosyreva M. A. Solution of geoecological problems in underground mining of deep iron ore deposits. Eurasian Mining. 2018. No 1. pp. 35—40.

2.     Eremenko V. A., Gakhova L. N., Semenyakin E. N. Initiation of stress concentration zones and dynamic events in deep-level mining at Tashtagol ore body. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 2, pp. 80—87. [In Russ].

3.     Kurlenya M. V., Seryakov V. M., Eremenko A. A. Tekhnogennye geomekhanicheskie polya napryazheniy [Induced geomechanical stress fields], Novosibirsk, Nauka, 2005, 264 p.

4.     Borshch-Komponiets V. I., Makarov A. B. Gornoe davlenie pri otrabotke moshchnykh pologikh rudnykh zalezhey [Rock pressure in thick and gently dipping ore mining], Moscow, Nedra, 1986, 271 p.

5.     Eremenko V. A., Gakhova L. N., Esina E. N., Zinchenko D. N. Features of geomechanical support in deep-level iron ore mining. Gornyy zhurnal. 2014, no 5, pp. 74—78. [In Russ].

6.     Kazikaev D. M., Kozyrev A. A., Kaspar'yan E. V., Iofis M. A. Upravlenie geomekhanicheskimi protsessami pri razrabotke mestorozhdeniy poleznykh iskopaemykh: Uchebnoe posobie [Geomechanical control in mineral mining: Teaching aid], Moscow, Izd-vo «Gornaya kniga», 2016, 490 p.

7.     Kozyrev A. A., Semenova I. E., Zhuravleva O. G., Panteleev A. V. Hypothesis of strong seismic event origin in Rasvumchorr Mine on January 9, 2018. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 12, pp. 74—83. DOI: 10.25018/0236-1493-2018-12-0-74-83. [In Russ].

8.     Zubov V. P. Technologies in application and current challenges of resource saving in underground mining of sheet deposits. Gornyy zhurnal. 2018, no 6, pp. 77—83. [In Russ].

9.     Sidorov D. V., Ponomarenko T. V., Larichkin F. D., Vorob'ev A. G. Economic justification of innovative solutions on reduction of raw material loss in the aluminium industry in Russia. Gornyy zhurnal. 2018, no 6, pp. 65—68. [In Russ].

10.    Khazhyylay Ch. V., Eremenko V. A., Kosyreva M. A., Yanbekov A. M. Effect of pore pressure on stress state of rock mass under mining with convergent technologies. Trudy Vserossiyskoy nauchnoy konferentsii dlya studentov, aspirantov i molodykh uchenykh s elementami nauchnoy shkoly

«Gornyatskaya smena–2019» 24.06—27.06.2019. Novosibirsk, IGD SO RAN, 2019. [In Russ].

11.    Khazhyylay Ch. V., Eremenko V. A., Kosyreva M. A., Yanbekov A. M. In-situ rock mass failure envelope plotting using the Hoek–Brown criterion and RocData software toolkit. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 12, pp. 92—101. [In Russ].

12.    Koval'chuk M. V., Naraykin O. S., Yatsishina E. B. Converging sciences and technologies— A new stage of technological advance. Voprosy filosofii. 2013, no 3, pp. 3—11. [In Russ].

13.    Trubetskoy K. N., Myaskov A. V., Galchenko Yu. P., Eremenko V. A. Rationale and creation of convergent technologies for underground mining of thick hard mineral deposits. Gornyy zhurnal. 2019, no 5, pp. 6—13. [In Russ].

14.    Eremenko V. A., Myaskov A.V., Galchenko Yu. P. Feasibility of creating nature-like technologies for mineral mining. Materialy X mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Kombinirovannaya geotekhnologiya: perekhod k novomu tekhnologicheskomu ukladu» 27.05—31.05.2019. Magnitogorsk, RAN, RFFI, IPKON RAN, MGTU im. G.I. Nosova. 2019, pp. 102—109. [In Russ].

15.    Lushnikov V. N., Sendi M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Procedure for determining extent of damaged rock zone around stopes by numerical modeling. Gornyy zhurnal. 2013, no 12, pp. 11—16. [In Russ].

16. Terzaghi K., Peck R. B. Soil mechanics in engineering practice. Wiley. New York. 1967.

17.    Jiang Q., Feng X., Song L., Gong Y., Zheg H., Cui J. Modeling rockspecimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica. 2015. 32(1). pp. 524—535.

18.    Glushikhin F. P., Kuznetsov G. N., Shklyarskiy M. F. Modelirovanie v geomekhanike [Modeling in geomechanics], Moscow, Nedra, 1991, 240 p.

19.    Eremenko V. A., Myaskov A. V., Galchenko YU. P., Romero Barrenechea Moyses Esau, Lagutin D. V. Substantiation of convergent technology data for the Ilets rock salt mining. Fundamental'nye i prikladnye voprosy gornykh nauk. 2018. Vol. 5, pp. 37—48. [In Russ].

20.    Rib S. V., Govorukhin Yu. M. Development of complex method of geomechanical processes study by the means of physical and numerical modeling. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 2, pp. 363—378. [In Russ].

21.    Basset R. H. The use of physical models in design. General Report, Proc. VII European Conf. on Soil Mechanics and Foundation Engineering, Brighton, U.K. Vol. 5, pp. 253—270.

22.    Dunbavan M. Physical models in geomechanics Lect. Series No.53 1982 James cook University. Australia.

23.    Vinnikov V. A., Vysotin N. G. Test procedure for finding static elastic modulus of rocks by laser–ultrasonic spectroscopy data. Gornyy informatsionno-analiticheskiy byulleten’. 2018, Special edition 1, pp. 90—101. [In Russ].

24.    Zou L., Tarasov B. G., Dyskin A. V., Adchikary D. P., Pasternak E., Xu W. Physical Modelling of Stress-dependent Permeability in Fractured Rocks. Rock Mechanics and Rock Engineering. 2013. Vol. 4. pp. 67—81.

25.    Baklashov I. V., Kartoziya B. A., SHashenko A. N., Borisov V. N. Geomekhanika T. 2 Geomekhanicheskie protsessy [Geomechanics Vol. 2 Geomechanical processes], Moscow, Izd-vo MGGU, 2004, 249 p.

26.    Kuz'min Yu. O., Zhukov V. S. Sovremennaya geodinamika i variatsii fizicheskikh svoystv gornykh porod [Modern geodynamics and variations in physical properties of rocks], Moscow, Izd-vo MGGU, 2004, 262 p.

27.    Kong L., Ostadhassan M., Li C., Tamimi N. Rock Physics and geomechanics of 3D printed Rocks. ARMA 51st U.S. Rock Mechanics. Geomechanics Symposium, San Francisco, California, USA, 2017, pp. 1—8.

28.    Gell E. M., Walley S. M, Braithwaite C. H. Review of the Validity of the Use of Artificial Specimens for Characterizing the Mechanical Properties of Rocks. Rock Mechanics and rock Engineering, 2019, no. 3, pp. 1—13.

Subscribe for our dispatch