DIGITIZATION OF CRUSHING AND MILLING EQUIPMENT RECONDITIONING

The study aimed to develop a factored component for mathematical model of stress state in blades of high-speed axial fan employed in mine ventilation systems. The model takes into a count a whole set of major loads. The design feature of such fans is their long-length blades made of polymer composites of lower rigidity as against metals. Such blades deform heavier and have low-frequency free vibrations. These properties condition optimization of blade design to minimize its mass at the preset physical and mechanical properties. Amongst the variety of loads applied to blades, the centrifugal air forces, inertia (in speedup) and weight are considered as the major loads inducing the highest tensile and bending stresses. In terms of failure of blades, the most risky point is the speedup ending as the aerodynamic and centrifugal forces, affecting the blades and reaching nominal values, combine with the forces of inertia. Depending on orientation of blades relative to ram air, the own weight both can exert extra load on the blade and reduce bending moment created by the aerodynamic and inertia forces. The centrifugal forces mostly create tensile stresses on the blade. The analysis of the cumulative load has allowed obtaining formulas of the blade stresses due to all factors, individually and jointly. The final formula estimates the minimum allowable thickness of the lade root section profile at the fulfilled strength requirement.


For citation: Tauger V. M., Lifanov A. V., Makarov V. N., Makarov N. V. Mathematical model modification for stress state of high-speed axial fan blades in mining industry. MIAB. Mining Inf. Anal. Bull. 2019;(10):206-213. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-206-213.

Keywords

Axial fan, high speed, blade, composite, loads, stress, strength.

Issue number: 10
Year: 2019
ISBN: 0236-1493
UDK: 621.914
DOI: 10.25018/0236-1493-2019-10-0-206-213
Authors: Tauger V. M., Lifanov A. V., Makarov V. N., Makarov N. V.

About authors: V.M. Tauger (1), Cand. Sci. (Eng.), Head of Chair, e-mail: tauger53@mail.ru, A.V. Lifanov, General Director, Scientific-Production Complex «OylGazMash», Podolsk, Russia, V.N. Makarov (1), Dr. Sci. (Eng.), Professor, N.V. Makarov (1), Cand. Sci. (Eng.), Head of Chair, e-mail: mnikolay84@mail.ru, 1) Ural State Mining University, 620144, Ekaterinburg, Russia. Corresponding author: V.M. Tauger, e-mail: tauger53@mail.ru.

REFERENCES:

1.    Alimov S. V., Prokopets A. O., Kubarov S. V. Modernization of gas air cooler fans in remodeling of compressor plants at supply pipelines. Gazovaya promyshlennost'. 2009, no 4, pp. 54—

15. [In Russ].

2.    Kalinin A. F., Merkur'eva Yu. S., Khallyev N. Kh. New-generation gas air cooler efficiency. Territoriya «NEFTE-GAZ». 2018, no 9, pp. 74—80. [In Russ].

3.    Tyutyunnikov N. P. Selecting size and arrangement of holes on attachment of composite blade of main rotor. Mekhanika kompozitsionnykh izdeliy i konstruktsiy. 2018. Vol. 24, no 3, pp. 349—361. [In Russ].

4.    Tauger V. M., Kholodnikov Yu. V., Al'shits L. Progressivnye tekhnologii proizvodstva kompozitnykh izdeliy. Universal'nost' i vysokaya proizvoditel'nost' [Advanced technologies in composite production. Universality and high rate productivity]. Saarbryukken (FRG), LAP, 2014, 110 p.

5.    Kerber M. L., Bukanov A. M., Vol'fson S. I. Fizicheskie i khimicheskie protsessy pri pererabotke polimerov [Physical and chemical processes in conversion of polymers], Saint-Petersburg, Nauchnye osnovy i tekhnologii, 2013, 320 p.

6.    Preobrazhenskiy I. A. Fiberglass—Properties, application, technologies. Glavnyy mekhanik. 2010, no 5, pp. 27—36. [In Russ].

7.    Potapova L. B. Mekhanika materialov pri slozhnom napryazhennom sostoyanii. Kak prognoziruyut predel'nye napryazheniya? [Material mechanics under combined stress. How the limiting stresses are predicted?] Tambov, Tambovskiy gosudarstvennyy tekhnicheskiy universitet, EBS ASV, 2012, 244 p.

8.    Torshizi S. A. M., Benisi A. H., Durali M. Numerical optimization and manufacturing of the impeller of a centrifugal compressor by variation of splitter blades. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, 13—17 June 2016, рр. 1—7.

9.    Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost' detaley mashin: spravochnik [Strength design of machine parts], Moscow, Mashinostroenie, 1993, 640 p.

10.   Wang P. Multi-objective design of a transonic turbocharger compressor with reduced noise and increased efficiency. Ph. D. Thesis. UCL University, London, 2017, 213 р.

11.   Torshizi S. A. M., Benisi A. H., Durali M. Multilevel optimization of the splitter blade profile in the impeller of a centrifugal compressor. Scientia Iranica, 2017, No 24, pp. 707—714.

12.   Tauger V. M., Mukhacheva L. V., Volkov E. B. Prevention of resonance oscillations of axial fan blades. Izvestiya vuzov. Gornyy zhurnal. 2018, no 4, pp. 119—123. [In Russ].

13.   Lee J., Nam K. Development of low-noise cooling fan using uneven fan blade spacing. SAF Technical Paper 2008-01-0569, 2008, pp. 53—58.

14.   Bousman W. G. Rotocraft airloads measurements: extraordinary costs, extraordinary benefits. The 31st Alexander Nikolsky Honorary Lecture. Journal of the American Helicopter Society, 2014, Vol. 59, No 3, pp. 32—38.

Subscribe for our dispatch