Analysis and monitoring modern Earth’s surface deformation velocity for local geodynamic polygons with scale effect

Authors: Manevich A.I.

For assessing the geodynamic state of areas with different tectonic activity it is necessary to correctly ass the deformations of the Earth’s crust. One of the methods to study the destruction of the Earth’s crust is to make observations using global navigation satellite systems (GNSS). The use of GNSS to observe the current movements of the Earth’s crust makes it possible to collect the most reliable data at different scales (local or regional). The analysis of data on the Earth’s surface deformations allows obtaining fundamental knowledge about the geodynamic regime of the region or local area under study and assessing the engineering state of natural and technical systems. The purpose of this study is to develop and test a method for analyzing the deformation rates of the Earth’s surface, taking into account the scale effect on local geodynamic polygons. The tasks of the work included: creation of a catalogue of deformation velocity data; deformation analysis taking into account their spatial scalability; assessment of the prospects of application of the obtained results. The effect of deformation rates reduction and their derivatives with increasing distance between observation points was investigated. The paper presents the calculation procedure, obtained distributions and regression dependencies of strain rates. Based on the revealed generalized dependencies, it is possible to a priori evaluate the deformation regime on the geodynamic test site (either to specify the degree of tectonic activity or to predict abnormally possible deformations).

Keywords: Earth’s surface deformation, deformation, scale effect, modern Earth’s crust movements, GNSS, GPS/GLONASS, local geopolygon.
For citation:

Manevich A.I. Analysis and monitoring modern Earth’s surface deformation velocity for local geodynamic polygons with scale effect. MIAB. Mining Inf. Anal. Bull. 2020;(6-1):194-203. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-194-203.

Acknowledgements:

This work was conducted in the framework of budgetary funding of GC RAS, adopted by the Ministry of Science and Higher Education of the Russian Federation.

Issue number: 6
Year: 2020
Page number: 194-203
ISBN: 0236-1493
UDK: 622.83; 551.24
DOI: 10.25018/0236-1493-2020-61-0-194-203
Article receipt date: 11.03.2020
Date of review receipt: 15.07.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Manevich A.I., researcher, laboratory of geodynamics, Geophysical Center Russian Academy of Sciences. 119296, Moscow, st. Molodezhnaya, 3, e-mail: ai.manevich@ yandex.ru, Russia.

For contacts:
Bibliography:

1. Kaftan V.I., Gvishiani A.D. Morozov V.N., Tatarinov V.N. Methods and results of determination of movements and deformations of the Earth’s crust according to GNSS data at the Nizhne-Kansk geodynamic test network in the area of radioactive waste disposal. Sovremennye problemy distancionnogo zondirovaniya iz kosmosa. 2019. no. 1. pp. 83–94. DOI: 10.21046/20707401-2019-16-83-94. [In Russ]

2. Tatarinov V.N., Morozov V.N., Kaftan V.I., Manevich A.I., Tatarinova T.A. Underground Research Laboratory: Problems of Geodynamic Research. Radioaktivnye othody. 2019. no. 1 (6). pp. 77–89. [In Russ]

3. Tatarinov V.N., Morozov V.N., Kaftan V.I., Manevich A.I. Modern geodynamics of the southern of the Yenisei ridge derived from the results of satellite observations. Geofizicheskie issledovaniya. 2018. T. 19. no. 4. pp. 64–79. DOI: 10.21455/gr2018.4—5. [In Russ]

4. Kaftan V., A. Melnikov. Deformation precursors of large earthquakes derived from long term GNSS observation data. Russian Journal of Earth Science. 2016. ES3001. DOI:10.2205/2016ES000568.

5. Rukovodstvo po bezopasnosti pri ispol’zovanii atomnoj energii «Ocenka iskhodno j sejsmichnosti rajona i ploshchadki razmeshcheniya ob’ekta ispol’zovaniya atomnoj energii pri inzhenernyh izyskaniyah i issledovaniyah» 2018. RB-019—18. [In Russ]

6. Federal’nye no. rmy i pravila v oblasti ispol’zovaniya atomno j energii «Uchet vneshnih vozdejstvij prirodnogo i tekhnogennogo proiskhozhdeniya na ob»ekty ispol’zovaniya atomno j energii». 2017. NP-064—17. [In Russ]

7. Guseva T.V., Mishin A.V., Skovorodkin Yu.P. Modern horizontal movements at different scale levels. Fizika Zemli. 1996. no. 12. pp. 86–91. [In Russ]

8. Kuz’min Yu.O. Recent geodynamics: from crustal movementsto monitoring critical objects. Fizika Zemli. 2019. no. 1. pp. 78–103. DOI: 10.31857/S0002-33372019178-103. [In Russ]

9. Tatarinov V.N., Bugaev E.G., Tatarinova T.A. Crust deformation assessment by satellite observation data in the context of validation program for safe geological radioactive waste disposal and isolation. Gornyj zhurnal. 2015. no. 10. pp. 27—31. DOI: 10.17580/gzh.2015.10.05. [In Russ]

10. Konovalova Yu.P. Features of accounting for geodynamic factors when choosing safe sites for responsible subsoil use facilities. Izvestiya vuzov. Gornyj zhurnal. 2018. no. 6. pp. 6–17. DOI: 10.21440/0536-1028-2018-6-6-17. [In Russ]

11. Manevich A.I., Tatarinov V.N., Kolikov K.S. Detection of crustal deformation ano malies with regard to spatial scale effect. Eurasian mining. 2019. no. 2. pp. 19—22. DOI: 10.17580/ em.2019.02.03.

12. Zubovich A.V., Wang X., Scherba Y.G., Schelochkov G.G., Reilinger R., Reigber C., Mosienko O.I., Molnar P., Michajljow W., Makarov V.I., Li J., Kuzikov S.I., Herring T.A., Hamburger M.W., Hager B.H., Dang Y., Bragin V.D., Beisenbaev R.T., GPS velocity field for the Tien Shan and surrounding regions. Tectonics. 2010. Vol. 29. TC6014. DOI:10.1029/2010TC002772.

13. Murray J.R., Svarc J. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program. Seismological Research Letters. 2017. Vol. 88. Iss. 3. DOI:10.1785/0220160204.

14. Luhnev A.V., San’kov V.A., Miroshnichenko A.I., Ashurkov S.V., Kale E. Rotations and deformations of the earth’s surface in the Baikal-Mongolian region according to GPS measurements. Geologiya i geofizika. 2010. T. 51. no. 7. pp. 1006–1017. [In Russ]

15. Agibalov A.O., Zajcev V.A., Sencov A.A., Devyatkina A.S. Assessment of the influence of modern crustal movements and the recently activated precambrian structural plan on the relief of the lake Ladoga region (the southeastern Baltic shield). Geodinamika i tektonofizika. 2017. T. 8. no. 4. pp. 791 807. DOI:10.5800/GT-2017-8-4-0317. [In Russ]

16. Déprez A., Doubre C., Masson F., Ulrich P. Seismic and aseismic deformation along the East African Rift System from a reanalysis of the GPS velocity field of Africa. Geophysical Journal International. 2013. Vol. 3. Iss. 193. pp. 1353–1369.

17. Shuanggen J., Li Z., Park P.H. Seismicity and GPS constraints on crustal deformation in the southern part of the Korean Peninsula. Geosciences Journal. 2006. Vol. 10. no. 4. pp. 491–497.

18. Milyukov V.K., Mironov A.P., Steblov G.M., Shevchenko V.I., Kusraev A.G., Drobyshev V.N., Hubaev H.M. Modern horizontal movements of the main elements of the tectonic structure of the Ossetian part of the Greater Caucasus by GPS measurements. Fizika Zemli. 2015. no. 4. pp. 68—80. [In Russ]

19. Tiryakioğlu I., Özkaymak C., Baybura T., Sözbilir H., Uysal M. Comparison of palaeostress analysis, geodetic strain rates and seismic data in the western part of the Sultandağı fault in Turkey. Annals of geophysics. 2018. Vol. 61. no. 3. DOI: 10.4401/ag-7591.

20. Drewes H. and Sánchez L. Velocity model for SIRGAS 2017: VEMOS2017 Technische Universitaet Muenchen, Deutsches Geodaetisches Forschungsinstitut DGFI-TUM, IGS RNAAC SIRGAS.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.