Analisys of mud inrush water sources into underground working of the Sokolovskoe ore deposit

Authors: Efremov E.Yu.

There is a serious threat of groundwater inrush from overlying sedimentary layers for underground mining. When ore is extracted using block caving method, the area of overburden collapse over ore zone disrupts the natural structure of high hydraulic-conductivity and low hydraulic-conductivity layers. This process creates conditions for the accumulation and transfer of groundwater to mine workings, which lead to accidents, up to disastrous proportions. The research aim is to determine the spatio-temporal distribution of mud inrushes, and to identify groundwater supply sources of inrushes to reduce the geotechnical risks of underground mining in Sokolovskaya mine. Research methods include localization, classification, and analysis of monitoring data, comparison of mud inrushes distribution with geostatistical parameters of the main aquifers.The majority of large-scale accidents caused by mud inrushes are confined to the central and northern area of caved rock zone. The most risky stage of the ore body extraction is the initial block at the lower extraction level. The sources of water supply for the majority of the mud inrushes are high water level areas of the Cretaceous aquifer to the north and west of the mine. Rational targeted drainage aimed at draining the identified areas of the aquifer is the best way to reduce the risk of accidents.

Keywords: funnel of caved zone, caved zone, water inflow, mud inrush, clay minerals, flooding, aquifer.
For citation:

Analisys of mud inrush water sources into underground working of the Sokolovskoe ore deposit. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):56-67. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-56-67.


the Work was performed within the framework of the State task # 07500581-19-00. Topic No 0405-2019-007. Topic 3 (2019-2021).

Issue number: 3
Year: 2020
Page number: 56-67
ISBN: 0236-1493
UDK: 622.834; 622.84
DOI: 10.25018/0236-1493-2020-31-0-56-67
Article receipt date: 21.11.2019
Date of review receipt: 30.12.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

Efremov E.Yu., researcher Institute of Mining of the Ural Branch of the Russian Academy of Sciences, 620075, Yekaterinburg, Mamin-Sibiryak st., 58, e-mail:

For contacts:

1. Szwedzicki T. Geotechnical precursors to large-scale ground collapse in mines. International Journal of Rock Mechanics and Mining Sciences, 2001, vol. 38, no 7, pp. 957–965

2. Brady B.H. G., Brown E.T. Rock Mechanics: For Underground Mining. Springer Science & Business Media, 2007, 628 p.

3. Sun, W., Zhou W., Jiao J. Hydrogeological Classification and Water Inrush Accidents in China’s Coal Mines. Mine Water and the Environment, 2016, vol. 35, no 2, pp 214–220.

4. Seymour C. Mining disasters. What lessons can be learnt. Conference paper: Queensland Mine Safety Conference. 2005. pp. 19–31 dbase_upl/SafeConf05.pdf 04.12.2018.

5. Vutukuri V.S., Singh R.N. Mine Inundation-Case Histories. Mine water and the environment, 1995, vol. 14, pp. 107–130.

6. Job B. Inrushes at British collieries: 1851 to 1970. Colliery Guardian, 1987, vol. 235, no 5, pp. 192–201.

7. Pelih S.G., Rodimov V.V., Borziak V.E., Shapovalov V.P. Analisys of engineer solution during saving people after OOO «Rosstovugol» «Zapadnaya-Kapitalnaya» mine disaster. MIAB. Mining Inf. Anal. Bull. 2005. no 2, pp. 191–193. [In Russ]

8. Trifonova P. «Alrosa» nachnet vosstanavlivat rudnik «Mir» v 2020 godu [«Alrosa» will begin recovery of «Mir» mine in 2020]. Vedomosti, 27 april 2018: https://www. 21.02.2019. [In Russ]

9. Bringemeier D. Inrush and mine inundation. A real threat to Australian coal mines? International Mine Water Association Annual Conference, Bunbury, Australia 30.09.2012 real_threat_to_Australian_coal_mines.

10. Yang W. Xia X. Zhao G. Ji Y. Shen D. Overburden failure and the prevention of water and sand inrush during coal mining under thin bedrock. Mining Science and Technology (China), 2011, vol. 21, no 5, pp. 733–736.

11. Zhou W., Li G. Impact of karst water on coal mining in North China. Environmental Geology. 2006 vol. 49 no 3 pp. 449–457. DOI: 10.1007/s00254—005—0102—3.

12. Dubinin N.G. Khramczov V.F. Shekhovczov V.S. Predotvrashenie prorivov glinistikh porod pri razrabotke rudnikh mestorogdeniy [Mud inrush prevention on ore mines]. Novosibirsk: IGD SO USSR publ., 1989. 124 p. [In Russ]

13. Usanov S.V., Krutikov A.V., Melnik D.E. Industrial safety management of «Sokolovskaya» mine under water-bearing geologic formation. Problemy nedropolzovanya, 2018, no 4, pp. 82–89, DOI: 10.25635/2313-1586.2018.04.082. [In Russ]

14. Hoek E. Prediction of Hazards in Underground Excavations. IFAC Proceedings Volumes, 1985, Vol. 18, no 6, pp. 1–5

15. Sokolov I.V., Smirnov A.A., Antipin Y.G., Baranovsky K.V., Nikitin I.V., Rozhkov A.A. Experimental investigation of underground mining of high-grade quarts in Kyshtym mine. Journal of mining science. 2018. V. 54. no 1. P.85—93.

16. Dalatkazin T.S. Investigation of mineral composition of weathering crust for ensuring safety production of mining. Problemy nedropolzovanya, 2018, no 3, P. pp. 39–43, DOI: 10.25635/2313—1586.2018.03.039. [In Russ]

17. Vedernikov A.S. Elaboration of deposit seismicity in «aseismic» region of Republic of Kazakhstan. Problemy of nedropolzovania, 2018. no 4, pp. 23—28, DOI: 10.25635/2313— 1586.2018.04.023. [In Russ]

18. Vedernikov А.V., Grigorjev D.V., Zuev P.I. Opyt provedeniya geofizicheskikh issledovaniy pri seismomikrorayonirovanyy territoriy osobo otvestvenikh ob’ektov [Experience of geophysical surveys for seismic micro-zoning of territories of critical objects]. XV Uralskaya molodezhnaya geofizicheskaya shkola po geofizike-XV Ural Geophysics Scientific School for Young Researchers: Sbornik. 2016. pp. 56—60[In Russ]

19. Balek A.E., Panzhin A.A., Konovalova Y.P., Melnik D.E. Osobennosty napryazhenogo sostoyaniya gornogo massiva Sokolovskogo zhelezorudnogo mestorogdeniya [Paricular properties of rock stress conditions of «Sokolovskoe» ore deposit]. Сonference paper: Innovation technology for extraction of ore and industrial minerals, Yekaterinburg, 11.04.2018, pp. 256–265. [In Russ]

20. Balek A.E., Panzhin A.A., Konovalova Y.P., Melnik D.E. Specificity of combined extraction of ore minerals for rock stress measurement in situ. MIAB. Mining Inf. Anal. Bull., 2018, no 4 pp. 20–27, DOI: 10.17580/gzh.2018.04.04. [In Russ]

21. Efremov E.Y. Rationale of cave-in process consummation criterion. Izvestia Tulskogo gosudarstvennogo universiteta. Nauki o zemle, 2018, no 4, P.12–22. [In Russ]

22. Ma D., Cai X., Li Q., Duan H. In-Situ and Numerical Investigation of Groundwater Inrush Hazard from Grouted Karst Collapse Pillar in Longwall Mining. MDPI. 2018. V 10. no 9. DOI: 10.3390/w10091187

23. Wang Y, Geng F., Yang Sh., Jing H., Meng B. Numerical simulation of particle migration from crushed sandstones during groundwater inrush. Journal of Hazardous Materials. 2019. V 362. pp. 327—335. DOI: 10.1016/j.jhazmat.2018.09.011

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.