Analysis of microcirculation flows between microzones in face areas of blind shear stopes in potash mines with different ventilation methods

The article describes a new, heuristically useful method of detailed studies into the ventilation flow structure and the resulting air quality at workplaces of shearer and selfpropelling car operators in case of different method ventilation of blind stope face areas in potash mines. In this method, the main technologically and aerologically distinguished zones in a blind stope are divided to microzones, and the microcirculation flows between these microzones are then analyzed. It is shown that the air quality in the breathing zone and at operator’s workplace is governed by vortex flows of scales much less than dimension of a stope. It is proposed to denote such vortexes as microcirculation flows as they circulate between microzones—small localities in a stope. The introduction of these notions, which are new in the mine aerology, allows microzoning, i.e. division of free air space in face areas of blind shear stopes into microzones. As a result, it is possible to comprehensively analyze and better understand air flow mechanisms which govern the air quality in the breathing zones of miners and to make correct engineering solutions on ventilation control. The proposed method is applicable to theoretical analysis and on-site monitoring of vortex dynamics in two classical modes of ventilation in blind stopes—blowing and suction. It is shown that the blowing method, which is the best for drilling and blasting, loses its advantages in shear stopes, while the suction method shows benefits during fully mechanized heading and shearing. It is specified that, although the suction ventilation is yet unallowed in mines, it possesses a high potential for airing efficiency improvement, especially in potash and rock salt mines.

Keywords: microzoning, microzone, microcirculation flow, face area ventilation in blind shear stopes, potash mines, salt dust, ventilation mode, shearing system, air flow, displacement, mixing.
For citation:

Fainburg G. Z., Isaevich A. G. Analysis of microcirculation flows between microzones in face areas of blind shear stopes in potash mines with different ventilation methods. MIAB. Mining Inf. Anal. Bull. 2020;(3):58-73. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-58-73.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 17-45-590657.

Issue number: 3
Year: 2020
Page number: 58-73
ISBN: 0236-1493
UDK: 622.454
DOI: 10.25018/0236-1493-2020-3-0-58-73
Article receipt date: 14.11.2019
Date of review receipt: 23.12.2019
Date of the editorial board′s decision on the article′s publishing: 20.02.2020
About authors:

G.Z. Fainburg1, Dr. Sci. (Eng.), Professor, Chief Researcher, e-mail: faynburg@yandex.ru,
A.G. Isaevich1, Cand. Sci. (Eng.), Head of Sector, e-mail: aero_alex@mail.ru,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.G. Isaevich, e-mail: aero_alex@mail.ru.

Bibliography:

1. Zemlyanova M.A., Zaytseva N.V., Shlyapnikov D.M., Markovich N.I. Biochemical markers of early diagnostics of production-induced idiopathic hypertensia of ore mill personnel. Meditsina truda i promyshlennaya ekologiya. 2016, no 8, pp. 20—25. [In Russ].

2. Kosyachenko G.E. Working conditions and dust burden levels of potash mine personnel in Belarus. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gornoshakhtnogo i neftepromyslovogo oborudovaniya. 2018. Vol. 1, pp. 250—257. [In Russ].

3. Zhou Z., Hu P., Han Z., Chen J. Effect of heading face ventilation arrangement on regulation of dust distribution. Journal of Central South University. Science and Technology. 2018. Vol. 49, no 9, pp. 2264—2271.

4. Ekkehard M. Ventilation measures for pollutant control [Wettertechnische Massnahmen zur Schadstoffbeherrschung]. Gluckauf: Die Fachzeitschrift fur Rohstoff, Bergbau und Energie, 1998, Vol. 134, no 10, pp. 707—711.

5. McDaniel K.H., Griswold L., Kelleher J., Saulters R. Dry, visible, salt-dust filtration of the face exhaust air at the WIPP. Mining Engineering, 2001, Vol. 53, no 3, pp. 45—48.

6. Isaevich A.G., Kormshchikov D.S. Analysis of dust conditions in potash mine, experience of dust reduction at workplaces. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 4, pp. 60—74. [In Russ].

7. Levin L.Yu., Isaevich A.G., Semin M.A., Gazizullin R.R. Dynamics of air-dust mixture in ventilation of blind drifts operating a team of cutter-loaders. Gornyy zhurnal. 2015, no 1, pp. 72—75. [In Russ].

8. Gazizullin R.R., Isaevich A.G., Levin L.Yu. Numerical modeling of emission of harmful mine air impurities by various-mode ventilation of blind stopes. Nauchnye issledovaniya i innovatsii. 2011. Vol. 5, no 2, pp. 127—129. [In Russ].

9. Zhang F., Chen J., Jiang Z. Numerical simulation and field measurement of dust concentration distribution in belt conveyor roadway. IOP Conference Series: Earth and Environmental Science, 2018, Vol. 170, no 3, art. no. 032170.

10. Faynburg G.Z. Economic ventilation: concept and basic means. Aktual'nye problemy povysheniya effektivnosti i bezopasnosti ekspluatatsii gorno-shakhtnogo i neftepromyslovogo oborudovaniya. 2014, Vol. 1, no 1, pp. 115—121. [In Russ].

11. Kęsek M., Bogacz P., Migza M. The application of Lean Management and Six Sigma tools in global mining enterprises. IOP Conference Series: Earth and Environmental Science, 2019, Vol. 214, no 1, art. no. 012090.

12. Nikolaev A.V., Faynburg G.Z. Energyand resource-saving ventilation of underground openings in oil mines. Vestnik Permskogonatsional'nogoissledovatel'skogopolitekhnicheskogo universiteta. Geologiya, neftegazovoe i gornoe delo. 2015, no 14, pp. 92—97. [In Russ].

13. Hasheminasab F., Bagherpour R., Aminossadati S.M. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation. Tunnelling and Underground Space Technology, 2019, Vol. 89, pp. 68—77.

14. Romanchenko S.B. Air-and-dust flow dynamics control in underground coal mining. Gornyy zhurnal. 2014, no 5, pp. 298—333. [In Russ].

15. Sutormin E.V., Trekov M.V. Continuous heading machines for sylvinite production. Molodezh' i nauchno-tekhnicheskiy progress. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov, aspirantov i molodykh uchenykh. Gubkin, 16 aprelya 2015 g. [The Youth and Scientific-and-Technical Progress. International Scientific–Practical Conference for Students, Post-Graduates and Young Scientists. Gubkin, April 16, 2015]. Belgorod, 2015, pp. 138—140. [In Russ].

16. Liskova M.Yu., Kovalev R.A., Kopylov A.B., Voronkova Yu.A. Dust conditions in mine. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 3, pp. 49—61. [In Russ].

17. Medvedev I.I., Krasnoshteyn A.E. Aerologiya kaliynykh rudnikov [Aerology of potash mines], Sverdlovsk, UrO AN SSSR, 1990, pp. 250.

18. Faynburg G.Z., Ovsyankin A.D., Krasyuk N.F., Vaysman O.Ya., Shalaev S.B., Zabelin A.Yu. Ventilation in blind shear face areas in potash mine by suction. Razrabotka kaliynykh mestorozhdeniy: Mezhvuzovskiy sbornik nauchnykh trudov [Development of potassium ore fields: Intercollegiate collection of scientific papers], Perm, 1989, pp. 153—159. [In Russ].

19. Faynburg G.Z., Ovsyankin A.D., Vaysman O.Ya., Shalaev S.V. Experience of suction ventilation in shear stopes in the Upper Kama potash mines. Sovershenstvovanie razrabotki solyanykh mestorozhdeniy: Mezhvuzovskiy sbornik nauchnykh trudov [Improvement of salt field development: Intercollegiate collection of scientific papers], Perm, 1990, pp. 122—127. [In Russ].

Mining World Russia
Subscribe for our dispatch