Computer-aided creation of coordinate grid for blasted rock block

The notions of ‘coordinate grid of blast block’ and ‘coordinate grid of blasted block’ are defined. The computer-aided determination of the coordinate grid points for a blasted rock block is described. The starting point is using relationships of the initial parameters of a blast rock block such as height and the final pattern of the determined points in the blasted rock block. The governing factors of a blasted block coordinate grid are the broken-rock disintegration height and width dependent on physical and mechanical properties of rocks, physicochemical characteristics of explosives and on blasting pattern design. Considerable influence on arrangement of the blasted block coordinate grid points is exerted by the degree of fragmentation of rocks in horizontal and inclined layers. It is found that the degree of fragmentation tends to increase from the rear to the periphery of the broken rock pile, both horizontally and vertically. Based on the integration of all determinants of a broken rock pile after blasting, the analytical method is newly developed to determine the points and create the coordinate grid of a blasted block. The new computer program for the automatic creation of a blasted block coordinate grid takes into account the influences exerted by physical and mechanical properties of rocks, physicochemical characteristics of explosives and blasting pattern design. The program allows fast and sufficiently accurate position fixing of a blasted block coordinate grid points at different parameters and conditions of blasting. The resultant coordinate grids of blasted blocks are the tool for locating different elements inside broken-rock disintegration.

Keywords: blasted block coordinate grid, grid points, broken-rock disintegration height and width, horizontal and inclined rock layers, degree of disintegration, computer-aided creation of coordinate grid.
For citation:

Rakishev B. R., Rakisheva Z. B., Orynbay А. А. Computer-aided creation of coordinate grid for blasted rock block. MIAB. Mining Inf. Anal. Bull. 2020;(8):40-51. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-40-51.


The study was supported by the Ministry of Education and Science of the Republic of Kazakhstan in 2018–2020 within the framework of Target Program 2018/ BR05235618: Technological and Production Modernization in the Mining and Processing Industry in the Republic of Kazakhstan.

Issue number: 8
Year: 2020
Page number: 40-51
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236-1493-2020-8-0-40-51
Article receipt date: 21.02.2020
Date of review receipt: 30.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.07.2020
About authors:

B.R. Rakishev1, Academician of NAS of the Republic of Kazakhstan, Dr. Sci. (Eng.), Professor, e-mail: b.rakishev,
Z.B. Rakisheva, Cand. Sci. (Phys. Mathem.), Professor, Head of Chair, Al-Farabi Kazakh National University, Almaty, Kazakhstan,
Orynbay Asfandiyar Aytkazyuly1, PhD Student, Senior Lecturer,
1 K.I. Satpayev Kazakh National Research Technical University (Satbayev Unuversity), Almaty, Kazakhstan.


For contacts:

B.R. Rakishev, e-mail:


1. Pokrovskiy G. I., Fedorov I. S. Deystvie udara i vzryva v deformiruemykh sredakh [The action of shock and explosion in deformable media], Moscow, 1957, 276 p.

2. Rakishev B. R. Avtomatizirovannoe proektirovanie i proizvodstva massovykh vzryvov na kar'erakh [Automated design and production of mass explosions in quarries], Almaty, Gylym, 2016, 340 p.

3. Rakishev B. R., Shampikova A. Kh., Kazangapov A. E. Mining and geological characteristics of blown up structural blocks. Vzryvnoe delo. 2018, no 120-77, pp. 82—93. [In Russ].

4. Viktorov S. D., Frantov A. E., Zakalinskiy V. M. Teoriya — tekhnika — tekhnologiya vzryvnykh rabot s primeneniem konversionnykh VV v protsessakh gornogo proizvodstva [Theory — technology — blasting technology using conversion explosives in mining processes], Moscow, IPKON RAN, 2019, 384 p.

5. Viktorov S. D. Explosive destruction of rock masses — the basis of progress in mining. MIAB. Mining Inf. Anal. Bull. 2015, no S1, pp. 63—75. [In Russ].

6. Kazakov N. N., Shlyapin A. V. Determination of tensor stress-strain state of rocks during explosion of a borehole charge. MIAB. Mining Inf. Anal. Bull. 2018, no S1, pp. 112—126. [In Russ].

7. Paramonov G. P., Kovalevskiy V. N., Mysin A. V. Numerical simulation of the destruction of a rock block by an explosion taking into account laboratory experiments. Vzryvnoe delo. 2019, no 122-79, pp. 19—33. [In Russ].

8. Yanitskiy E. B., Kobelko S. G., Dunaev V.A., Rakhmanov R. A. Computer simulation of rock mass displacement and evaluation of ore dilution as a result of a mass explosion in open pit mining. Vzryvnoe delo. 2018, no 120-77, pp. 94—108. [In Russ].

9. Tyupin V. N., Anisimov V. N. Methods of stability retention of exposed rock surfaces in fractured rock mass under large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2019;(4):53-62. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-53–62.

10. Khalkechev R.K. Fuzzy mathematical model of crack density variation in mineral under external loading. MIAB. Mining Inf. Anal. Bull. 2019;(6):97-105. [In Russ]. DOI: 10.25018/02361493-2019-06-0-97-105.

11. Sergunin M. P., Eremenko V.A. Learning of neural network to predict overlying rock mass displacement parameters by the data on jointing in terms of the Zapolyarny Mine. MIAB. Mining Inf. Anal. Bull. 2019;(10):106-116. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-106-116.

12. Babello V.A., Beydin A. V., Smolich S. V., Ovseychuk V.A. Assessment of rock mass behavior based on its geology analysis and stress state modeling. MIAB. Mining Inf. Anal. Bull. 2019;(12):41-54. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-41-54.

13. Kazakov N. N. The destruction and crushing of rocks in quarries. Vzryvnoe delo. 2018, no 119-76, pp. 5—19. [In Russ].

14. An H. M., Hongyuan Liu, Haoyu Han, Xin Zheng, Wang X. G. Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast. Computers and Geotechnics. 2017. Vol. 81. Pp. 322—345.

15. Onederra I.A., Furtney J. K., Sellers E., Iverson S. Modelling blast induced damage from a fully coupled explosive charge. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 58.Pp. 73—84.

16. Bakhshandeh Amnieh Hassan, Moein Bahadori Numerical analysis of the primer location effect on ground vibration caused by blasting. International Journal of Mining and Geo-Engineering. 2017. Vol. 51. No 1. Pp. 53—62. DOI: 10.22059/IJMGE.2017.62153.

17. Branko D., Detournay C., Cundall P.A. Application of particle and lattice codes to simulation of hydraulic fracturing. Computational Particle Mechanics. 2016. Vol. 3. No 2. Pp. 249—261.

18. Furtney J. K., Andrieux P., Hall A. K. Applications for numerical modeling of blast induced rock fracture. 50th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2016.

19. Zirui Mao, Guirong Liu, Yu Huang, Yangjuan Bao A conservative and consistent lagrangian gradient smoothing method for earthquake-induced landslide simulation. Engineering Geology. 2019. Vol. 260. Article 105226. DOI: 10.1016/j.enggeo.2019.105226.

20. Yingguo Hu, Wenbo Lu, Xinxia Wu, Meishan Liu, Peng Li Numerical and experimental investigation of blasting damage control of a high rock slope in a deep valley. Engineering Geology. 2018. Vol. 237. Pp. 12—20. DOI: 10.1016/j.enggeo.2018.01.003.

21. Laurent P. J. Approksimatsiya i optimizatsiya [Approximation and optimization], Moscow, Mir, 1975, pp. 496.

22. Powers L., Snell M. Microsoft Visual Studio 2015 Unleashed, 3rd edition. Indianapolis, Imprint Sams, 2015.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.