Single-impact rock crushing experiment

Authors: Симонов П. С.

The effect of the specific impact energy on the grain size composition of crushed rocks is studied. It is shown that the experimental curves of the grain size content can be well described by the power-series distributions. The test results are presented in the form of the plotted distribution versus the specific impact energy. It is found that with increasing specific impact energy, the initial lump is crushed into a certain number of fragments and the fragmentation degree grows. At the same time, the fragmentation degree growth is not linear as follows from Rittinger’s law but decelerates with increasing specific energy of impact. This is connected with an increase in the irreversible loss of energy, i.e. with energy dissipation at the higher loading rate. Probable periodic behavior is noticed in destruction of rocks by the cycle of increment of defects–opening of defects on various scales. Thus, high values of the specific energy intake are not always expedient and lead to considerable loss of energy and decreased efficiency of crushing. In laboratory tests of rock crushing by drop hammer, it is possible to determine the optimal specific energy such that ensures the preset grain size composition of crushed products.

Keywords: Impact, lump, grain size composition, specific energy, optimization, rock crushing, mineral processing, rock blasting.
For citation:

Simonov P. S. Single-impact rock crushing experiment. MIAB. Mining Inf. Anal. Bull. 2020;(1):71-79. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-71-79.

Acknowledgements:
Issue number: 1
Year: 2020
Page number: 71-79
ISBN: 0236-1493
UDK: 622.23.01:622.235
DOI: 10.25018/0236-1493-2020-1-0-71-79
Article receipt date: 29.07.2019
Date of review receipt: 07.11.2019
Date of the editorial board′s decision on the article′s publishing: 20.12.2019
About authors:

P. S. Simonov, Cand. Sci. (Eng.), Assistant Professor,
G.I. Nosov Magnitogorsk State Technical University,
455000, Magnitogorsk, Russia, e-mail: p.simonov@magtu.ru.

For contacts:

P. S. Simonov, e-mail: p.simonov@magtu.ru.

Bibliography:

1. Segarra P., Sanchidrian J. A., Navarro J. et al. The fragmentation energy-fan model in quarry blasts. Rock Mechanics and Rock Engineering. 2018, Vol. 51, pp. 2175—2190. DOI 10.1007/s00603-018-1470-9.
2. Sanchidrian J. A., Ouchterlony F. A distribution-free description of fragmentation by blasting based on dimensional analysis. Rock Mechanics and Rock Engineering. 2017, Vol. 50, pp. 781—806. DOI 10.1007/s00603-016-1131-9.
3. Ouchterlony F., Sanchidrián J. A., Moser P. Rock percentile fragment size predictions for blasted rock and the fragmentation–energy fan. Rock Mechanics and Rock Engineering. 2017, Vol. 50, pp. 751—779. DOI 10.1007/s00603-016-1094-x.
4. Zakharov E. V., Kurilko A. S. Local minimum of energy consumption of hard rock destruction in negative temperature range. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no 2, pp. 94—98. [In Russ].
5. Oparin V. N., Timonin V. V., Karpov V. N. Quantitative estimate of rotary-percussion drilling efficiency in rocks. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 6, pp. 60—74. [In Russ].
6. Oparin V. N., Timonin V. V., Karpov V. N., Smolyanitskiy B. N. Energy-based volumetric rock destruction criterion in the rotary-percussion drilling technology improvement. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 6, pp. 81—104. [In Russ].
7. Simonov P. S. Determination of the size of the middle piece and the output of the gauge during blasting in quarries. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 4, pp. 320— 327. [In Russ].
8. Paramonov G. P., Vinogradov Yu. I., Kamenskiy A. A. Distribution of products of destruction of granite files. Zapiski Gornogo instituta. 2011, Vol. 189, pp. 146—150. [In Russ].
9. Anisimov V. N., Belin V. A. Dugartsyrenov A. V. Dust and gas suppression in large-scale quarry explosions via fine-dispersed water curtains. Gornyy zhurnal. 2007, no 12, pp. 101—103. [In Russ].
10. Kovalevskiy V. N., Paramonov G. P., Gospodarikov A. P., Magomedov T. M., Mazur A. S., Larichev A. Yu. To the question of estimation dust and gas appearance at quarries during mass explosions. Vzryvnoe delo. 2010, no 104/61, pp. 272—281. [In Russ].
11. Revnivtsev V. I., Gaponov G. V., Zarogatskiy L. P. Selektivnoe razrushenie mineralov. Pod red. V. I. Revnivtseva [Selective destruction of minerals. Revnivtsev V. I. (Ed.)], Moscow, Nedra, 1988, 286 p.
12. Kouzov P. A. Osnovy analiza dispersnogo sostava promyshlennykh pyley i izmel'chennykh materialov [Bases of the analysis of disperse structure industrial dusts and the crushed materials], Leningrad, Khimiya, 1987, 264 p.
13. Subba Rao D. V. Minerals and coal process calculations. London: CRC Press/Balkema, Taylor & Francis Group, 2016. 332 p.
14. Viktorov S. D., Kochanov A. N. Experimental regularities in formation of submicron particles under rock failure. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no 5, pp. 76—83. [In Russ].
15. Viktorov S. D., Odintsev V. N., Kochanov A. N., Osokin A. A. Micro- and nanoparticle generation under rock deformation and fracture. Vzryvnoe delo. 2010, no 104/61, pp. 63—73. [In Russ].
16. Viktorov S. D., Kochanov A. N. Experimental researches of microstructural changes of samples of rocks at intensive explosive influence. Vzryvnoe delo. 2009, no 101/58, pp. 38—42. [In Russ].
17. Isheyskiy V. A., YAkubovskiy M. M. Determination of strength reduction factor in blasted rocks versus the distance from the blast center. Gornyy zhurnal. 2016, no 12, pp. 55—59. [In Russ]. DOI: 10.17580/gzh.2016.12.12.
18. Oparin V. N., Tanayno A. S. Canonical ranking of sizes of structural units in rocks classifications. Classifications. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2009, no 6, pp. 40—53. [In Russ].

Subscribe for our dispatch