Formation of water chemistry in the Modonkul river under the action of mine drainage effluent

The Dzhida ore field in the Zakamensk district of Buryatia features high concentration of mineralization within a small area. The Dzhida deposit is composed of complex ore. The ore field contains commercial-value primary deposits: Pervomai stockwork of molybdenum, Kholtoson tungsten lode and Inkur stockwork of tungsten. The Modonkul river catchment basin lies inside the Dzhida ore field. A real threat to the town of Zakamensk is created by manmade sand—bulk (old) tailings and slurry dump. By now, the concentrated flow of natural and man-made sand enters the low terrace and floodplain of the Modonkul river in the form of a talus train. This study is focused on the influence of the mine drainage effluent and the Inkur tributary on the water chemistry in the Modonkul river. 80 water samples were taken from the surface layer 0–0.5 m thick at five stations. Physicochemical indices of water were measured at the water sampling points, and the water chemistry was analyzed in a laboratory. In the background conditions, cations and anions in the Modonkul water chemistry range in decreasing order as follows: Са2+ > Mg2+ > Na++К+ и HCO3–> SO42– > Cl–. In the zone of mixture of natural and mine process water, the chemistry changes: from hydrocarbonate to sulfate (anion), from calcium–magnesium to sodium–calcium (cation). Downstream the natural chemistry changes to the hydrocabonate-sulfate composition, with prevailing content of calcium in cations. Iron content of water lowers 3–4 times after influx of mine effluents, while the contents of Mn, Zn, Co and Cd grow and then decrease downstream.

Keywords: acid mine effluent, water chemistry change, alkaline barrier, sedimentation of hydroxides, heavy metal sorption.
For citation:

Khazheeva Z. I., Sanzhanova S. S. Formation of water chemistry in the Modonkul river under the action of mine drainage effluent. MIAB. Mining Inf. Anal. Bull. 2020;(6):56-66. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-56-66.


The study was accomplished under the state contract with the Geological Institute, Siberian Branch, Russian Academy of Sciences, Project IX.137.1.4: Interactions in the water–rock–organic matter system in the natural and man-made conditions in the Baikal Region. State Registration Number AAAA-A17-117021310076-3.

Issue number: 6
Year: 2020
Page number: 56-66
ISBN: 0236-1493
UDK: 622.504.75
DOI: 10.25018/0236-1493-2020-6-0-56-66
Article receipt date: 18.04.2019
Date of review receipt: 29.07.2019
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Z.I. Khazheeva1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail:
S.S. Sanzhanova1, Cand. Sci. (Eng.), Junior Researcher,
1 Geological Institute, Russian Academy of Sciences, 670047, Ulan-Ude, Russia.

For contacts:

Z.I. Khazheeva, e-mail:


1. Ananin V.A. Ways of solving problems of Dzhida tungsten–molybdenum works. Sostoyanie i perspektivy razvitiya mineral'no-syr'evogo i gornodobyvayushchego kompleksov Respubliki Buryatiya [Mineral reserves and mining industry in the Republic of Buryatia: Current conditions and development prospects], Ulan-Ude, Izd-vo BNTS SO RAN, 1999, pp. 134—138.

2. Gordienko I. V., Gorokhovsky D. V., Smirnova O. K., Lantseva V. S., Badmatsyrenova R.A., Orsoev D.A. Dzhida ore district: geology, structural and metallogenic regionalization, genetic types of ore deposits, geodynamic conditions of their formation, forecast and outlook for development. Geology of Ore Deposits. 2018. Vol. 60. No 1. Pp. 3–37. DOI: 10.7868/ S001677701801001X.

3. Damdinova L. B., Damdinov B. B., Khubanov V. B., Huang X. W., Bryansky N. V., Yudin D. S. Age, conditions of formation, and fluid composition of the Pervomaiskoe molybdenum deposit (Dzhidinskoe ore field, South-Western Transbaikalia, Russia). Minerals. 2019. Vol. 9. No 10. Pp. 572—593. DOI: 10.3390/min9100572.

4. Smirnova O. K., Plyusnin A. M. Dzhidinskiy rudnyy rayon (problemy sostoyaniya okruzhayushchey sredy) [Dzhida ore province (environmental problems)], Ulan-Ude, Izd-vo BNTS SO RAN, 2013, 181 p.

5. Bortnikova S. B., Gas'kova O. L., Bessonova E. P. Geokhimiya tekhnogennykh sistem [Geochemistry of anthropogenic systems], Novosibirsk, Akademicheskoe izd-vo «GEO», 2006, 169 p.

6. Murray J., Kirschbaum A., Dold B., Guimaraes E. Jarosite versus soluble iron-sulfate formation and their role in acid mine drainage formation at the Pan de Azúcar Mine Tailings (ZnPb-Ag), NW Argentina. Minerals. 2014. Vol. 4. No 2. Pp. 477—502. DOI: 10.3390/min4020477.

7. Wei X., Rodak C. M., Zhang S., Han Y., Wolfe F.A. Mine drainage generation and control options. Water Environment Research. 2016. Vol. 88. No 10. Pp. 1409—1432.

8. Armienta M.A., Villaseñor G., Cruz O., Ceniceros N., Aguayo A., Morton O. Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zima-pán Central Mexico. Applied Geochemistry. 2012. Vol. 27. Pp. 2225—2237.

9. Kefeni K. K., Msagati T.A., Mamba B. B. Acid mine drainage: prevention, treatment options, and resource recovery: a review. Journal of Cleaner Production. 2017. Vol. 151. Pp. 475—493.

10. Khazheeva Z. I. Current chemical composition of water in the Modonkul river. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 6, pp. 183–187. [In Russ].

11. Wei X., Wolfe F.A., Han Y. Mine drainage: characterization, treatment, modeling and environmental aspect. Water Environment Research. 2014. Vol. 86, No 10. Pp. 1515—1534.

12. Alekin O.A., Semenov A. D., Skopintsev B.A. Rukovodstvo po khimicheskomu analizu vod sushi [Manual on chemical analysis of land water], Leningrad, Gidrometeoizdat, 1973, 270 p.

13. Gosudarstvennyy kontrol' kachestva vody [Governmental control of water quality], Moscow, IPK Izdatel'stvo standartov, 2003, 776 p.

14. Alekin O.A. Osnovy gidrokhimii [Elementaries of hydrochemistry], Leningrad, Gidrometeoizdat, 1970, 440 p.

15. Geologicheskaya evolyutsiya i samoorganizatsiya sistemy voda-poroda [Geological evolution and self-organization of water–rock system], in 5 vols. Vol. 2: Water-rock system in the conditions of hypergenesis zone. Izd-vo SO RAN, 2007, 389 p.

16. Oliva P., Viers J., Dupre B. Chemical weathering in granitic environments. Chemical Geology. 2003. Vol. 202, No 23—24. Pp. 225—256.

17. Salmon S. U., Malmstrom M. E. Quantification of mineral dissolution rates and applicability of rate laws: Laboratory studies of mill tailings. Applied Geochemistry. 2006, Vol. 21. No 2. Pp. 269—288.

18. Yurkevich N. V., Saeva O. P., Palchik N.A. Arsenic mobility in two mine tailings drainage systems and its removal from solution by natural geochemical barriers. Applied Geochemistry. 2012. Vol 27. No 11. Pp. 2260—2270.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.