Formation of mine water composition and analysis of treatment methods

Formation of mine water inflow compositions is discussed, and the methods of mine water treatment are described. Mine water has different chemistry depending on hydrological, geological and geotechnical factors, as well as on depth of mining. Formation of mine water on higher horizons takes place under the influence of oxidation processes, while reduction processes are typical of lower levels. With an increasing depth, hydrocarbonate water changes into carbonate-sulfate and sulfate-hydrocarbonate water. The main pollutants of mine water are identified, the methods of mine water treatment are reviewed, the criteria of application of mine water treatment methods are specified, and the advantages and disadvantages of the methods are described. In terms of the Kirov Mine, the structure of mine water treatment facilities is considered. It is found that equipment included in the process flow chart ensure good removal of various size suspended solids from water and partially remove iron ions (when its oxidation goes to an insoluble form). However, some heavy metals remain in mine water. This fact is proved by the background concentrations observed in the places of mine water discharge in the Inya river. In the Inya water river, some contaminants exceed MAC, namely, total iron, manganese, copper, ion nitrite, etc. The authors describe the treatment methods and equipment used in coal mines in Kuzbass. There is a wide range of mine water treatment methods, but the technologies in application mainly reduce to mechanical purification which enables efficient removal of suspended solids, oil products, bacterial pollution and, partly, iron. In compliance with the requirements to mine water treatment quality, mines should modernize treatment facilities and introduce new advanced technologies, i.e. provide an integrated solution of the mine water treatment problem, and should anticipate usability of treated mine water and dregs.

Keywords: mine water, suspended solids, mine water aggressiveness, mine water treatment methods, water treatment quality, hydrogeology, geological and geotechnical conditions.
For citation:

Kulikova A.A., Sergeeva Yu.A., Ovchinnikova T. I., Khabarova E. I. Formation of mine water composition and analysis of treatment methods. MIAB. Mining Inf. Anal. Bull. 2020;(7):135-145. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-135-145.

Acknowledgements:
Issue number: 7
Year: 2020
Page number: 135-145
ISBN: 0236-1493
UDK: 622.841(571.17)
DOI: 10.25018/0236-1493-2020-7-0-135-145
Article receipt date: 11.03.2020
Date of review receipt: 07.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.06.2020
About authors:

A.A. Kulikova1, Senior Lecturer, e-mail: alexaza_@mail.ru,
Yu.A. Sergeeva, Deputy Head of Department of PC, Safety, Health and Environmental Protection, Head of Environmental Protection Department, SUEK JSC, Russia, e-mail: sergeevaya@suek.ru,
T.I. Ovchinnikova1, Dr. Sci. (Eng.), Head of Chair, e-mail: ovchinnikova_ti@mail.ru,
E.I. Khabarova1, Cand. Sci. (Chem.), Assistant Professor; Assistant Professor, MIREA — Russian Technological University, Moscow, Russia, e-mail: khabarova@mitht.ru,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

A.A. Kulikova, e-mail: alexaza_@mail.ru.

Bibliography:

1. Gavrishin A. I. Formation patterns of the chemical composition of mine waters in Eastern Donbas. Doklady Earth Sciences. 2018. Vol. 481. No 1. Pp. 916—917.

2. Kulikova E. Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018. Vol. 931. Pp. 385—390. DOI: 10.4028/www. scientific.net / MSF.931.385.

3. Runtti H., Tolonen E. T., Tuomikoski S., Lassi U., Luukkonen T. How to tackle the stringent sulfate removal requirements in mine water treatment — A review of potential methods. Environmental Research. 2018. Vol. 167. Pp. 207—222. DOI: 10.1016/j.envres.2018.07.018.

4. Pavlenko M.V., Skopintseva O.V. Role of capillary forces in vibratory action on hydraulically treated gas-saturated coal. MIAB. Mining Inf. Anal. Bull. 2019;3:43-50. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-43-50.

5. Arefieva O. D., Shapkin N. P., Gruschakova N. V., Prokuda N. A. Mine water: chemical composition and treatment. Water Practice and Technology. 2016. Vol. 11. No 3. Pp. 540—546.

6. Pelipenko M. V., Balovtsev S. V., Aynbinder I. I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019;(11):180-192. [In Russ]. DOI: 10.25018/0236-14932019-11-0-180-192.

7. Balovtsev S. V., Shevchuk R. V. Geomechanical monitoring of mine shafts in difficult ground conditions. MIAB. Mining Inf. Anal. Bull. 2018, no 8, pp. 77–83. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0-77-83.

8. Balovtsev S. V. Aerological risk assessment in working areas of gas and dust explosionhazardous coal mines. Gornyi Zhurnal. 2015, no 5, pp. 91—93. [In Russ]. DOI: 10.17580/ gzh.2015.05.19.

9. Voytovich S. P. Geochemical features of mine water in the coal basins of Ukraine and Russia. Molodoy uchenyy. 2015, no 23, pp. 395—397. [In Russ].

10. Lebedev V. S., Skopintseva O. V. Residual coalbed gas components: composition, content, hazard. Gornyi Zhurnal. 2017, no 4, pp. 84—86. [In Russ]. DOI: 10. 17580/gzh.2017.04.17.

11. Gubina N. A., Ylesin M. A., Karmanovskaya N. V. Ways to increase the productivity and quality of mine water treatment. Journal of Environmental Management and Tourism. 2018. Vol. 9. No 3. Pp. 423—427. DOI: 10.14505/jemt.v9.3(27).03.

12. Busarev A. V., Sheshegova I. G., Sharipova K. G. On the issue of mine drainage treatment. Problemy i perspektivy razvitiya stroitel'stva, teplogazosnabzheniya i energoobespecheniya. Materialy VIII Natsional'noy konferentsii s mezhdunarodnym uchastiem [Problems and prospects for the development of construction, heat and gas supply and energy supply Materials of the VIII National Conference with international participation], Saratov, 2018, pp. 74—78. [In Russ].

13. Bardamova I. V. Studying the properties of the geochemical barrier based on limestone. Mineralogiya i geokhimiya landshafta gornorudnykh territoriy. Ratsional'noe prirodopol'zovanie. Sovremennoe mineraloobrazovanie: trudy VII Vserossiyskogo simpoziuma s mezhdunarodnym uchastiem i XIV Vserossiyskikh chteniy pamyati akad. A.E. Fersmana [Mineralogy and geochemistry of the landscape of mining territories. Rational nature management. Modern mineral formation. Proceedings of the VII all-Russian Symposium with international participation and the XIV all-Russian readings in memory of A. E. Fersman], Chita, 2018, pp. 217—222. [In Russ].

14. Palihakkara C. R., Dassanayake S., Jayawardena C., Senanayake I. P. Floating wetland treatment of acid mine drainage using eichhornia crassipes (water hyacinth). Journal of Health and Pollution. 2018. Vol. 8. No 17. Pp. 14—19.

15. Begak M. V., Guseva T. V. On the application of the best available technologies in wastewater treatment in the European Union. Pure water: problems and solutions. 2011, no 1—2, pp. 50—54. [In Russ].

16. Efimov V. I., Korchagina T. V., Svinarenko S. A., Ryabov G. G. Method of mine water treatment. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 3, pp. 36—42. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.