Gravity dewatering of metallurgical coal flotation tailings using flocculants

Experimental research was undertaken to determine effectiveness of gravity dewatering of coal flotation tailings using two combinations of anion-active (A) and cation-active (C) flocculants: high molecular mid-activity anion flocculant A1 + low molecular high-activity cation flocculant C1; high molecular high-activity anion flocculant A2 + average molecular high-activity cation flocculant C2. The aim of the research was to find possibility to reduce consumption of flocculants in dewatering of coal flotation tailings at an operating preparation plant without performance degradation of belt filter presses. The data on dewatering kinetics allow calculating resistivity α0 of residue. It is found that A2+C2 combination ensures the stated rational α0 of 6.0 · 1010 m-2 at the flocculant consumptions as follows: A1 475 g/t + C1 475 g/t and A2 375 g/t + C2 375 g/t, i.e. less than the current consumption by 25%. Using the experimental data, the operating mode of the belt filter press is calculated. At the solids content of 300–400 kg/m3 in suspension and using flocculants at the specified consumptions, the required solids production of 15 t/h of the filter is reached at the belt speed of 0.07–0.16 m/s, which complies with the filter specifications.

Keywords: belt filter press, gravity dewatering, coal flotation tailings, flocculants, volume residue resistivity, belt speed, solids production.
For citation:

Lavrinenko A. A., Golberg G. Yu., Lusinyan O. G. Gravity dewatering of metallurgical coal flotation tailings using flocculants. MIAB. Mining Inf. Anal. Bull. 2020;(11):5-13. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-5-13.

Acknowledgements:
Issue number: 11
Year: 2020
Page number: 5-13
ISBN: 0236-1493
UDK: 622.794
DOI: 10.25018/0236-1493-2020-11-0-5-13
Article receipt date: 07.07.2020
Date of review receipt: 08.09.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

A.A. Lavrinenko1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: lavrin_a@mail.ru,
G.Yu. Golberg1, Cand. Sci. (Eng.), Senior Researcher, e-mail: gr_yu_g@mail.ru,
O.G. Lusinyan1, Cand. Sci. (Eng.), Leading Engineer, e-mail: lusinyan.oganes@yandex.ru,
1 Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia.

 

For contacts:

G.Yu. Golberg, e-mail: gr_yu_g@mail.ru.

Bibliography:

1. Antipenko L. A., Kravchenko A. E. Water-slurry circuits at coal preparation plants: current state and development prospects. MIAB. Mining Inf. Anal. Bull. 2017, no 4, pp. 156—165. [In Russ].

2. Eremeyev D. N. Slime waters clarification and flotation thickening of waste coal slurries by polymeric flocculants. Voda: khimiya i ekologiya. 2012, no 2, pp. 63—66. [In Russ].

3. Svechnikova N. Yu., Yudina S. V., Mamedalina N. I. Analysis of flotation waste coal. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2015, no 1 (16), pp. 19—21. [In Russ].

4. Yagüe S., Sánchez I., de la Villa Mencía R. V., García R., Zapardiel A., Frías M. Coalmining tailings as a pozzolanic material in cements industry. Minerals. 2018. Vol. 8. No 2. DOI: 10.3390/min8020046.

5. Xiaomin Ma, Yuping Fan, Xianshu Dong, Ruxia Chen, Hongliang Li, Dong Sun, Suling Yao Impact of clay minerals on the dewatering of coal slurry: an experimental and molecularsimulation study. Minerals. 2018. Vol. 8. No 9. DOI: 10.3390/min8090400.

6. Hansdah P., Kumar S., Mandre N. R. Performance optimization of dewatering of coal fine tailings using Box-Behnken design. Energy Sources. Part A: Recovery, Utilization, and Environmental Effects. 2017. Vol. 40. No 1. Pp. 1—6. DOI: 10.1080/15567036.2017.1405112.

7. Klima M. S., Arnold B. J., Bethell P. J. Challenges in fine coal processing, dewatering, and disposal. Englewood, Colorado, Society of Mining, Metallurgy, and Exploration. 2012, 404 p.

8. Osborne D. G., Walton K. J. Facing the challenges of ultrafine coal recovery. XVIII International Coal Preparation Congress: 28 June-01 July 2016 Saint Petersburg, Russia. Conference proceedings. Springer, 2016. Pp. 439—444.

9. Zasyadko A. V., Kostromitin A. V., Osadchiy S. A., Lobanov F. I., Panfilov P. F., Golberg G. Yu. Dewatering of flotation concentrates and middlings on belt press filters. Proceedings of XV International Coal Preparation Congress and Exhibition. Beijng: China University of Mining and Technology Press. 2006. Vol. 2. Pp. 545—548.

10. Singh B. K., Erdmann W. Das entwässerung von flotationsbergen mit einer siebbandpresse. Glückauf. 1978. Vol. 114, no 7, pp. 25—30.

11. Leininger D., Wilczynsky P., Köling P., Erdmann W., Schieder T. Behandlung und verwertung von flotationsbergen in der Bundesrepublik Deutschland. Glückauf. 1979. Vol. 115, no 10, pp. 17—23.

12. Ksenofontov B. S., Sazonov D. V. Improvement of the method of express control of wateryielding properties of sewage sludge. Santekhnika. 2014, no 2, pp. 44—46. [In Russ].

13. Hou-Feng Wang, Hao Hu, Hua-Jie Wang, Raymond Jianxiong Zeng Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process. Science of Total Environment. 2018. Vol. 643. Pp. 1065—1073.

14. Zasyadko A. V., Panfilov F. A., Golberg G. Yu. The method for determining of suspensions flocculant conditioning efficiency. MIAB. Mining Inf. Anal. Bull. 2003, no 3, pp. 143—144. [In Russ].

15. Lavrinenko A. A., Golberg G. Yu., Kunilova I. V. Mechanisms of dehydration of suspensions by drainage. MIAB. Mining Inf. Anal. Bull. 2017, no 11, pp. 28—33. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.