Representative temperature at minimum energy content of ore and mineral milling in super high frequency heating

The ore milling method with preliminary heating of ore samples by SHF electromagnetic waves of different length is used in the studies. The SHF-treated sample and the unexposed initial sample were then separately milled in an impact testing machine by a gravity load falling from a certain height. As a result, the plots of specific energy content of milling as function of SHF treatment duration were obtained. The internal structural changes and micro cracking under SHF heating are connected with nonuniform heating of dissimilar minerals with different thermophysical properties. Different minerals of rocks and ore absorb energy of SHF waves and convert it to thermal energy. The relation of the heat capacity of rock and ore minerals and the SHF treatment duration and, consequently, temperature is obtained. Using the heat capacity formula and the functional relationship of the temperature and SHF treatment duration, the temperature–SHF treatment time curves are plotted for different rocks and for quartz. A new temperature characteristic of rocks and ore is experimentally discovered—the critical softening temperature fitting the minimum energy content of milling at the lowest temperature.

Keywords: rock, mineral, ore, milling, milling energy content, electromagnetic wave, heat capacity, thermal energy, softening.
For citation:

Tazhibaev K. T., Sultanalieva R. M., Makanov K. M., Tazhibaev D. K. Representative temperature at minimum energy content of ore and mineral milling in super high frequency heating. MIAB. Mining Inf. Anal. Bull. 2020;(9):65-76. [In Russ]. DOI: 10.25018/0236-14932020-9-0-65-76.

Issue number: 9
Year: 2020
Page number: 65-76
ISBN: 0236-1493
UDK: 553.08-026.56; 661.822-14.022.1
DOI: 10.25018/0236-1493-2020-9-0-65-76
Article receipt date: 29.02.2020
Date of review receipt: 02.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.08.2020
About authors:

Tazhibaev K.T.1, Dr. Sci. (Eng.), Professor, Head of Laboratory, e-mail:,
Sultanalieva R.M., Dr. Sci. (Phys. Mathem.), Professor, Prorector on Scientific Work and External Relations, I. Razzakov Kirghiz State Technical University, Bishkek, Kirghiz Republic,
Makanov K.M.1, Graduate Student,
Tazhibaev D.K.1, Cand. Sci. (Eng.), Head of Laboratory,
1 Institute of Geomechanics and Development of Bowels, National Academy of Sciences of Kirghiz Republic, Bishkek, Kirghiz Republic.


For contacts:

Tazhibaev K.T., e-mail:


1. Bobicki E. R., Pickles C. A., Forster J., Hutcheon R. High temperature permittivity measurements of selected industrially relevant ores: Review and analysis. Minerals Engineering. 2019. Vol. 145.

2. Marion Ch., Jordens A., Maloney C., Langlois R. Effect of microwave radiation on the processing of a Cu-Ni sulphide ore. Canadian Journal of Chemical Engineering. 2015. Vol. 94. No 1. Pp. 15—21.

3. Ferrari R., Batchelor A. R., Katrib J., Dodds C., Kingman S. W. Understanding selectivity in radio frequency and microwave sorting of porphyry copper ores. International Journal of Mineral Processing. 2016. Vol. 155. Pp. 64—73 .

4. Buttress A. J., Rodriguez J. M., Ure A., Ferrari R. S., Dodds C., Kingman S. W. Production of high purity silica by microfluidic-inclusion fracture using microwave pre-treatment. Minerals Engineering. 2019. Vol. 131. Pp. 407—410.

5. Rakhmankulov D. L., Shavshukova S. Yu., Vikhareva I. N., Chanyshev R. R. Experience of microwave energy use in mining. Bashkirskiy khimicheskiy zhurnal. 2008, vol. 15, no 2, pp. 114—117.

6. Tazhibaev K. T., Sultanalieva R. M. Energy-saving milling method for hard ore. MIAB. Mining Inf. Anal. Bull. 2015, no 12, pp. 76—82.

7. Tazhibaev K. T., Sultanalieva R. M., Akmatalieva M. S., Tazhibaev D. K. Method of optimized softening and milling of hard ore and minerals. Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova. 2013, no 29, pp. 303—310.

8. Il'nitskaya E. I., Teder R. I., Vatolin E. S., Kuntysh M. F. Svoystva gornykh porod i metody ikh opredeleniya [Properties of rocks and determination methods], Moscow, Nedra, 1969, 452 p.

9. Yushkov A. Yu. Electric pulse destruction of rocks. Sovremennye nauchnye issledovaniya i innovatsii. 2015, no 4-2(48), pp. 67—71.

10. Blinov L. M., Gerasimenko A. P., Gulyaev Yu. V., Dolgolaptev A. V., Cherepenin V. A. Feasibility of technology for explosive rapture of rocks–dielectrics by directional electromagnetic flow of concentrated SHF energy. Zhurnal radioelektroniki. 2019, no 2, pp. 129—134. DOI: 10.30898/1684-1719.2019.2.4.

11. Tazhibaev K. T., Sultanalieva R. M. Studies of temperature variation patterns as function of duration of ore treatment by SHF waves. Vestnik Kyrgyzsko-rossiyskogo slavyanskogo universitet. 2015, vol. 15, no 5, pp. 135—140.

12. Spravochnik (kadastr) fizicheskikh svoystv gornykh porod. Pod red. N.V. Mel'nikova, V.V. Rzhevskogo, M.M. Protod'yakonova [Handbook (cadastre) of physical properties of rocks. Mel'nikov N. V., Rzhevskiy V. V., Protod'yakonov M. M. (Eds.)], Moscow, Nedra, 1975, 279 p.

13. Il'nitskaya E. I. Svoystva gornykh porod i metody ikh opredeleniya [Properties of rocks and determination methods], Moscow, Nedra, 1969, 452 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.