Intensification of heap leaching of gold from finely dispersed ore using nanotechnologies

Authors: Воробьев А. Е., Чекушина Т. В., Каки Кристоф, Тчаро Хоноре, Воробьев К. А.

Currently gold mining practitioners pay increasing much attention to heap leaching technologies as they enable metal extraction from rather low-grade ore: gold at the content of 0.5–2 g/t; copper at 0.15–0.5%, uranium at 0.02–0.07% U9O8 etc. However, an essential drawback of this technology is loss of process (leaching) solutions and agents in evaporation from the surface and slopes of heap leaching piles, or, vice versa, their dilution with atmospheric fallout. Another serous fault of the technologies is loss of finely dispersed gold in the form of floating ‘islands’. One of the preferable solutions to these technical and geoecological problems is application of different coatings in order to reduce evaporation of process solution to atmosphere in dry-weather periods and to control water flows in rainy seasons (to prevent penetration of process solution in natural surface and ground water). Furthermore, the purpose-oriented control of these aspects can ensure the required quality of process solutions: optimal values of pH, Eh and surface tension, which greatly govern origination and life span of the floating nanogold islands.

Keywords: Nanotechnology, nanogold, floating islands, flakes, evaporation, dilution, process solution, shielding, outward coating, silicone nanofilm, heap leaching, beneficiation.
For citation:

Vorob'ev A. E., Chekushina T. V., Kaki Christophe, Tcharo Honore, Vorob'ev K. A. Intensification of heap leaching of gold from finely dispersed ore using nanotechnologies. MIAB. Mining Inf. Anal. Bull. 2020;(1):160-174. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-160-174.

 

Acknowledgements:
Issue number: 1
Year: 2020
Page number: 160-174
ISBN: 0236-1493
UDK: 622.775
DOI: 10.25018/0236-1493-2020-1-0-160-174
Article receipt date: 20.09.2019
Date of review receipt: 10.11.2019
Date of the editorial board′s decision on the article′s publishing: 20.12.2019
About authors:

A.E. Vorob'ev, Dr. Sci. (Eng.), Professor, Vice-rector for research and innovation,
Atyrau University of Oil and Gas, Atyrau, Kazakhstan;
Chief Researcher, Peoples’ Friendship University of Russia, 117198, Moscow, Russia,
T.V. Chekushina1, Cand. Sci. (Eng.), Assistant Professor;
Leading Researcher, Institute of Problems of Comprehensive Exploitation
of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia,
Kaki Christophe, Dr. Sci. (Geol. Mineral.), Professor, Sedimentologist Geologist,
Research Professor, University of Abomey-Calavi, Cotonou, Benin,
Tcharo Honore1, Graduate Student, Assistant, e-mail: honoretcharo@yahoo.com,
K.A. Vorob'ev1, Bachelor,
1 Engineering Academy, Peoples’ Friendship University of Russia,
117198, Moscow, Russia.

For contacts:

Tcharo Honore, e-mail: honoretcharo@yahoo.com

Bibliography:

1. Mineev G. G., Vasil'ev A. A., Nikitenko A. G. Heap leaching of gold-bearing ores. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21, no 4 (123), pp. 147—156. [In Russ].
2. Golik V. I., Komashchenko V. I. Practice of metal leaching from ore processing waste. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2016, no 3, pp. 13—23. [In Russ].
3. Svetlov A. V., Makarov D. V., Goryachev A. A. Areas of base metal leaching stimulation in terms of low-grade copper–nickel deposits of the Murmansk Region. Mineralogiya tekhnogeneza. 2017, no 18, pp. 154—162. [In Russ].
4. Kostromin M. V. New trends in the mass exchange stimulation in heap leaching of gold. Uchenye zapiski Zabaykal'skogo gosudarstvennogo universiteta. Fizika, matematika, tekhnika, tekhnologiya. 2017. Vol. 12, no 4, pp. 45—51. [In Russ].
5. Kosichenko Yu. M., Baev O. A. Mathematical and physical modeling of permeation through small defects in anti-seepage facilities made of polymer geomembranes. Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B.E. Vedeneeva. 2014. Vol. 274, pp. 60—73. [In Russ].
6. Leskov A. S. Results of experimental leaching of gold-bearing geomaterial. Evraziyskiy soyuz uchenykh. 2015, no 5—3 (14), pp. 116—119. [In Russ].
7. Vorob'ev A. E., Tcharo Kh. Key factors governing efficiency of heap leaching pile sprinkling. Vestnik Evraziyskoy nauki. 2019, no 1. Vol. 11. [In Russ]. https://esj.today/PDF/51NZVN119.pdf.
8. Vorob'ev A. E., Tcharo Kh. Evolvement of coating and shields applied in heap leaching. Vestnik Evraziyskoy nauki. 2018, no 6. Vol. 10. [In Russ]. https://esj.today/PDF/97NZVN618.pdf.
9. Vorob'ev A. E., Vorob'ev K. A. Nanomaterialy i nanotekhnologii: Osobennosti protekaniya fiziko-khimicheskikh protsessov v nanosistemakh: Monografiya [Nanomaterials and nanotechnologies: Behavioral features of physicochemical processes in nanosystems: Monograph], Palmarium Academic Publishing (Saarbrücken), 2018, 113 p.
10. Peng Yang, Guizhen Wang, Zhe Gao, He Chen, Yong Wang, Yong Qin. Uniform and conformal carbon nanofilms produced based on molecular layer deposition. Materials. 2013, no 6(12), pp. 5002—5012. DOI: 10.3390/ma6125602.
11. Uploshchennost' zolota (zolotin). Zolotodobycha [Flattened gold (gold grains)], https://zolotodb.ru/article/11389.
12. Gui Lu, Xiao-Dong Wang, Yuan-Yuan Duan Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. Journal of Nanoparticle Research. 2014, September 16:2564. DOI: 10.1007/s11051-014-2564-2.
13. Smirnov E., Peljo P., Scanlon M. D., Gumy F., Girault H H. Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale. 2016, 8, 7723—7737.
14. Ashane Fernando, I. M. S. K. Ilankoon, Meng Nan Chong, Tauqir Haider Syed. Effects of intermittent liquid addition on heap hydrodynamics. Minerals Engineering. 2018, Vol. 124, August, pp. 108—115. DOI: 10.1016/j.mineng.2018.05.016.
15. Vorob'ev A. E., Tcharo Kh. Eurasian patent No. 032669. Eurasian patent organization, 2019.

Subscribe for our dispatch