Using pillar-free mining technologies in gently dipping and self-ignitable coal seams

Authors: Golubev D.D.

Gently dipping coal seams of the Kuznetsk Coal Basin are cut exclusively by longwalls with preliminary drivage of twin gate ways. At the same time, the source of self-ignition in mines is pillars of coal left in mined-out areas. Endogenous fire hazard grows with higher losses of loose coal in mined-out areas due to a persistent increase in mining depth and in size of longwalls. This research aims at development of an alternative mining technology for gently dipping coal seams to reduce the risk of initiation of self-ignition sources in mined-out areas and at the determination of parameters of the technology elements as functions of coal seam thickness and mining depth. A new concept of preparatory works and actual mining in selfignitable coal seams is described. The study results obtained with numerical modeling of the stress–state behavior of rock mass and the developed technology elements at different stages of longwalling are presented. The studies show that endogenous fire hazard is reduced by means of extraction of coal pillar on the same line with face and due to elimination of aerological connection between the operating longwall and earlier mined-out area owing to construction of a separation belt made of solidifying materials between them. The cross-effect of the widths of the solidifying material belt and coal pillar as the elements of the developed technology is estimated.

Keywords: coal, coal self-ignition, underground mining, coal pillars, pillar-free technologies, longwall mining systems, mined-out area, solidifying material belts, numerical modeling.
For citation:

Golubev D. D. Using pillar-free mining technologies in gently dipping and self-ignitable coal seams. MIAB. Mining Inf. Anal. Bull. 2020;(7):64-77. [In Russ]. DOI: 10.25018/02361493-2020-7-0-64-77.

Issue number: 7
Year: 2020
Page number: 64-77
ISBN: 0236-1493
UDK: 622.272.6
DOI: 10.25018/0236-1493-2020-7-0-64-77
Article receipt date: 23.02.2020
Date of review receipt: 15.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.06.2020
About authors:

D.D. Golubev, Graduate Student, e-mail:, Saint Petersburg Mining University, 199106, Saint Petersburg, Russia.


For contacts:

1. Tarazanov I. G. Results of the Russian coal industry in January-December 2018. Ugol'. 2019, no 3 (1116), pp. 64—79. [In Russ]. DOI: 10.18796/0041-5790-2019-3-64-79.

2. Shaklein S. V., Pisarenko M. V. Concept of development of the raw material base of the Kuznetsk coal basin. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no 3, pp. 118—125. [In Russ].

3. Zubov V. P., Fedorov A. S. Development system for seam «mine-breakage face»: advantages, disadvantages, directions of perfection. MIAB. Mining Inf. Anal. Bull. 2019, no S7, pp. 272—277. [In Russ]. DOI: 10.25018/0236-1493-2019-4-7-272-277.

4. Golubev D. D. Influence of the combined ventilation schemes of extracting area on endogenous fire hazard of high-performance coal mines. MIAB. Mining Inf. Anal. Bull. 2019, no S6, pp. 66—74. [In Russ]. DOI: 10.25018/0236-1493-2019-4-6-66-74.

5. Krivonogova A. V., Strekalova S.A. Statistical analysis of accidents at mines in the Kemerovo region. Nauchnye issledovaniya: ot teorii k praktike. 2016, no 4—2, pp. 43—45. [In Russ].

6. Hao M., Li Y., Song X., Kang J., Su H., Zhou F. Hazardous areas determination of coal spontaneous combustion in shallow-buried gobs of coal seam group: a physical simulation experimental study. Environmental Earth Sciences. 2019. Vol. 78. No 1. DOI: 10.1007/s12665018-8010-5.

7. Skritskiy V. A. Causes of methane explosions in highly productive coal mines of Kuzbass. Innovatika i ekspertiza. 2017, no 2, pp. 171—180. [In Russ].

8. Su H., Zhou F., Li J., Qi H. Effects of oxygen supply on low-temperature oxidation of coal. A case study of Jurassic coal in Yima, China. Fuel. 2017. Vol. 202. Pp. 446—454. DOI: 10.1016/j.fuel.2017.04.055.

9. Deng J., Lei C., Xiao Y., Cao K., Ma L., Wang W., Laiwang B. Determination and prediction on «three zones» of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel. 2018. Vol. 211. Pp. 458—470. DOI: 10.1016/j.fuel.2017.09.027.

10. Xu T. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Advanced Powder Technology. 2017. Vol. 28. No 8. Pp. 1841—1848. DOI: 10.1016/j.apt.2017.01.015.

11. Sidorenko A. A., Sishchuk J. M., Gerasimova I. G. Underground mining of multiple coal seams: Problems and solutions. Eurasian Mining. 2016. No 2. Pp. 11—15. DOI: 10.17580/ em.2016.02.03.

12. Sidorenko A. A., Sirenko Y. G., Sidorenko S. A. An assessment of multiple seam stress conditions using a 3-D numerical modelling approach. Journal of Physics: Conference Series. 2019. Vol. 1333. No 3. DOI: 10.1088/1742-6596/1333/3/032078.

13. Kazanin O. I., Sidorenko A.A., Sementsov V. V. Determination of technology parameters of the thick steep gassy seams mining with sublevel caving and coal discharge mining system. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2014. No 6. Pp. 52—58.

14. Pravila bezopasnosti v ugol'nykh shakhtakh. Ser. 05. Vyp. 40 [Safety rules in the coal mines. Vol. 05. No 40]. Moscow, ZAO NTTS PB, 2017, 196 p.

15. Gromtsev K. V., Kovalsky E. R. Justification of stowing methods of the mined-out space during potasil deposits mining using longwall method. Topical Issues of Rational Use of Natural Resources: Proceedings of the International Forum-Contest of Young Researchers, St. Petersburg, Russia, 18—20 April 2018. London: CRC Press, 2018. Pp. 61—66.

16. Ivanov V. V., Sidorenko S. A., Sidorenko A. A., Korzhavykh P. V. The prospects of introduction of surface miners in technology of development of deposits of contiguous seams of the limestone. Advances in Environmental Biology. 2014. Vol. 8. No 13. Pp. 298—300.

17. Ilinets A. A., Sidorenko A. A., Sirenko Y. G. Computer modelling of a floor heave in coal mines. Journal of Physics: Conference Series. 2019. Vol. 1333. No 3. DOI: 10.1088/17426596/1333/3/032028.

18. Karpov G. N., Kovalski E. R., Smychnik A. D. Determination of rock destressing parameters at the ends of disassembling room. MIAB. Mining Inf. Anal. Bull. 2019;(8):95-107. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-95-107.

19. Vremennaya instruktsiya po okhrane vyemochnykh vyrabotok polosami iz tverdeyushchikh materialov [Interim instruction on protection of underground excavations by solidifying material bands]. Moscow, izd-vo IGD im. A.A. Skochinskogo, 1981, 20 p.

20. Instruktsiya po primeneniyu skhem provetrivaniya vyemochnykh uchastkov shakht s izolirovannym otvodom metana iz vyrabotannogo prostranstva s pomoshch'yu gazootsasyvayushchikh ustanovok. Ser. 05. Vyp. 21 [Instruction on the application of ventilation schemes of mines working areas with insulated removal of methane from the developed space using gas — suction plants. Vol. 05. No 21]. Moscow, ZAO NTTS PB, 2012, 126 p.

21. Instruktsiya po preduprezhdeniyu endogennykh pozharov i bezopasnomu vedeniyu gornykh rabot na sklonnykh k samovozgoraniyu plastakh uglya. Ser. 05. Vyp. 46 [Instruction on the prevention of the endogenous fires and safe conducting mining operations in coal seams liable to spontaneous combustion. Vol. 05. No 46]. Moscow, ZAO NTTS PB, 2016, 56 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.