Air exchange dynamics in the system of large cross-section blind roadways

Authors: Maltsev S. V., Kazakov B. P., Isaevich A. G., Semin M. A.

The ventilation potential of large cross-section blind roadways (132 m3) 50 m long without mine ventilation is examined. Combustion engine-driven machines in blind roadways extensively release exhaustion gases (carbon oxide and nitric oxides). The three-dimensional model is presented for calculating air distribution I roadways in extraction panels with induced flow airing plants without brattices. The calculations are performed in ANSYS modules CFX and Fluent. The tests show that Fluent is more suitable for air exchange problems in mines. Based on 3D numerical modeling, the influence zone of an induced flow airing plant to supply face area with sufficient air is determined. It is found that the induced flow airing plant has high aerodynamic effect on air exchange in four roadways arranged behind the plant along the air flow line. The average air flow rate is sufficient for ventilating these roadways after drilling and blasting. Influence zone of one air jet fan encircles four roadways by the criterion of air supply. The numerical modeling results on intensity of air exchange in a panel haulage drift and roadways at various positions of air jet fans are presented. The best sites for air jet fans are determined, and their influence on ventilation in blind roadways is assessed. Placement of air jet fans at the haulage drift wall closer to a roadway improves ventilation in the roadways by 2–3 times as against the air jet fan arrangement at the farther wall of the haulage drift. The proposed ventilation circuit ensures sufficient air exchange for ventilation of large cross-section blind roadways.

Keywords: gypsum mine, auxiliary fan, induced flow airing plant, mixing room, blind roadway ventilation, roughness of roadways, numerical modeling, air exchange intensity, ventilation efficiency improvement.
For citation:

Maltsev S. V., Kazakov B. P., Isaevich A. G., Semin M. A. Air exchange dynamics in the system of large cross-section blind roadways. MIAB. Mining Inf. Anal. Bull. 2020;(2):46-57. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-46-57.


This study was supported by the Russian Science Foundation, Project No. 19-77-30008.

Issue number: 2
Year: 2020
Page number: 46-57
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236-1493-2020-2-0-46-57
Article receipt date: 02.09.2019
Date of review receipt: 23.12.2019
Date of the editorial board′s decision on the article′s publishing: 20.01.2020
About authors:

S.V. Maltsev1, Engineer, e-mail:,
B.P. Kazakov1, Dr. Sci. (Eng.), Professor, Chief Researcher, Scopus ID: 14042066100,
A.G. Isaevich1, Cand. Sci. (Eng.), Sector Manager, Scopus ID: 56671263900,
M.A. Semin1, Cand. Sci. (Eng.), Researcher, Scopus ID: 56462570900,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

For contacts:

S.V. Maltsev, e-mail:


1. Kazakov B. P., Mal'tsev S. V., Semin M. A. Justification of measurement sites for aerodynamic parameters of air flow in air resistance determination in shafts. Gornyy informatsionnoanaliticheskiy byulleten’. 2015, no S7, pp. 69—75. [In Russ].
2. Mokhirev N. N. Issledovanie raboty ezhektiruyushchikh ustanovok v rudnichnykh ventilyatsionnykh setyakh [Analysis of operation of induced flow airing plants in mine ventilation networks], 1974, pp. 217.
3. Kazakov B. P., Semin M. A., Mal'tsev S. V. Mathematical modeling of ventilation in panels of gypsum mine by induced flow airing plants. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 3, pp. 245—255. [In Russ].
4. Levin L. Yu., Isaevich A. G., Semin M. A., Gazizullin R. R. Dynamics of air-dust mixture in ventilation of blind drifts operating a team of cutter-loaders. Gornyy Zhurnal. 2015, no 1, pp. 72—75.
5. Kachurin N. M., Stas' G. V., Mokhnachuk I. I., Pozdeev A. A. Aero-gas-dynamics at working faces in underground mines. Problemy bezopasnosti i effektivnosti osvoeniya georesursov v sovremennykh usloviyakh: sbornik trudov konferentsii [Problems of safe and efficient development of georesources in modern conditions: proceedings of the conference], Perm, 2014, pp. 381—386.
6. Kachurin N. M., Mokhnachuk I. I., Pozdeev A. A., Stas' G. V. Mathematical models of aerogas-dynamic processes in face areas of underground mines. Izvestiya Tul'skogo gornogo universiteta. Nauki o Zemle. 2013, no 1, pp. 267—276. [In Russ].
7. Kaledina N. O., Kobylkin S. S. 3D modeling as a method to study and control thermal and aero-gas-dynamic processes in mines. Gornyy informatsionno-analiticheskiy byulleten’. 2013, no 1, pp. 149—156. [In Russ].
8. Kaledina N. O., Kobylkin S. S. System design of mine ventilation based on 3D modeling of aero-gas-dynamic systems. Gornyy informatsionno-analiticheskiy byulleten’. 2012, no S1, pp. 282—293. [In Russ].
9. Hasheminasab F., Bagherpour R., Aminossadati S. M. Numerical simulation of methane distribution in development zones of underground coal mines equipped with auxiliary ventilation. Tunnelling and Underground Space Technology. 2019, no 89, pp. 68—77.
10. Nel A. J. H., Vosloo J. C., Mathews M. J. Evaluating complex mine ventilation operational changes through simulations. Journal of Energy in Southern Africa. 2018, no 29 (3), pp. 22—32.
11. Camelli F. E., Byrne G., Löhner R. Modeling subway air flow using CFD. Tunnelling and Underground Space Technology. 2014, no 43, pp. 20—31.
12. Kurnia J. C., Sasmito A. P., Mujumdar A. S. CFD simulation of methane dispersion and innovative methane management in underground mining faces. Applied Mathematical Modelling. 2014, no 38 (14), pp. 3467—3484.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.