MAP 3D analysis of secondary stress field structure in face area of development headings in rockburst-hazardous seams

The article describes the research aimed to study and control the secondary stress field in face areas of development headings in rockburst-hazardous seams in the Internatsionalny Mine, as well as to model the stress–strain behavior and to obtain the qualitative estimate of rock mass condition. The authors present the resultant estimates of safety of the accepted drivage and roof support designs for development headings, excessive stresses and safety factor of rocks mass, as well as deformation of headings in beige rockburst-hazardous and grey dolomite rocks at different depths. The calculations were performed for six scenarios of intersection of beige rockburst-hazardous dolomite seams by a heading. The stress–strain behavior of surrounding rock mass around development headings in rockburst-hazardous seams was modeled in Map3D. The quantitative analysis results are currently used for the model calibration for the whole period of drivage and reinforcement of underground openings of spiral decline and motor transport ramp. Based on the modeling, the structure of secondary fields of stresses and strains during development heading in rockburst-hazardous rock mass has been determined.

Keywords: Internatsionalny Mine, gas-dynamic phenomena, outbursts, stresses, strains, Qindex, Map3D, RocData, Hoek–Brown and Mohr–Coulomb strength criteria, drilling-andblasting, development heading.
For citation:

Eremenko V.A., Aksenov Z. V., Pul E. K., Zakharov N. E. MAP 3D analysis of secondary stress field structure in face area of development headings in rockburst-hazardous seams. MIAB. Mining Inf. Anal. Bull. 2020;(5):91-104. [In Russ]. DOI: 10.25018/0236-14932020-5-0-91-104.

Acknowledgements:

This work was supported by the Russian Science Foundation, Project No. 19-17-00034.

Issue number: 5
Year: 2020
Page number: 91-104
ISBN: 0236-1493
UDK: 622.831 + 622.2
DOI: 10.25018/0236-1493-2020-5-0-91-104
Article receipt date: 24.01.2020
Date of review receipt: 06.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.04.2020
About authors:

V.A. Eremenko1, Dr. Sci. (Eng.), Professor, Director of Research Center for Applied Geomechanics and Convergent Technologies in Mining, NUST MISIS, e-mail: prof.eremenko@gmail.com,
Z.V. Aksenov1, Graduate Student, e-mail: aksenov.zakhar@yandex.ru,
E.K. Pul2, Head of Geotechnical Monitoring Department, e-mail: pulek@alrosa.ru,
N.E. Zakharov2, Chief Engineer,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia
2 Mirny Mining and Processing Plant, ALROSA, Mirny, Russia.

 

For contacts:

V.A. Eremenko, e-mail: prof.eremenko@gmail.com.

Bibliography:

1. AO NII Gornoy geomekhaniki i marksheyderskogo dela— MNTS «VNIMI» Ural'skiy filial. AK «ALROSA» (PAO) Podzemnyy rudnik «Internatsional'nyy». Ukazaniya po bezopasnomu vedeniyu gornykh rabot na podzemnom rudnike «Internatsional'nyy» sklonnom k gornym udara s glubiny nizhe 1245 m [Guidelines on safe mining in rockburs-hazardous conditions in the Internatsionalny Mine at a depth below 1245 m. VNIMI Institute, Ural Division, ALROSA].

2. Kovalenko A. A., Zakharov N. E., Pul' E. K., Zolotin V. G. Geomechanical aspects of the Internatsionalnaya kimberlite pipe mining. Gornyi Zhurnal. 2019, no 2, pp. 27—31. [In Russ].

3. Cai M., Kaiser P. K. Rockburst Support: Reference Book. Sudbury: Laurentian University, 2018. Vol. 1. Rockburst Phenomenonand Support Characteristics. 284 p.

4. Li C. C. Principles of rockbolting design. Journal of Rock Mechanics and Geotechnical Engineering. 2017. Vol. 9. Iss. 3. Pp. 396—414.

5. Haeri H., Shahriar K., FatehiMarjji M., Moarefvand P. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. International Journal of Rock Mechanics and Mining Sciences. 2014. Vol. 67. Pp. 20—28.

6. Fanzhen Meng, Hui Zhou, Zaiquan Wang, Liming Zhang, Liang Kong et al. Experimental study on the prediction of Rockburst hazard sinduced by dynamic structural plane shearing in deeply buried hard rock tunnels. International Journal of Rock Mechanics and Mining Sciences. 2016. Vol. 86. Pp. 210—223.

7. Bahrani N., Hadjigeorgiou J. Influence of stope excavation on drift convergence and support behavior: insights from 3D continuum and discontinuum. Models Rock Mechanics and Rock Engineering. 2018. Vol. 51. Pp. 2395–2413.

8. Paul A., Murthy V. M. S. R., Prakash A., Singh A. K. Estimation of rock load in development workings of underground coal mines — A modified RMR approach. Current Science. 2018. Vol. 114(10). Pp. 2167—2174. DOI: 10.18520/cs/v114/i10/2167-2174.

9. Souley M., Renaud V., Al Heib M., Lahaie F., Nyström A. Numerical investigation of the development of the excavation damaged zone around a deep polymetallic ore mine. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 106. Pp. 165—175.

10. Cheng G., Chen C., Li L., Zhu W., Yang T., Dai F., Ren B. Numerical modelling of strata movement at footwall induced by underground mining. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 108. Pp. 142—156.

11. Kozyrev A. А., Semenova I. E., Zhuravleva O. G., Panteleev A. V. Hypothesis of strong seismic event origin in Rasvumchorr Mine on January 9, 2018. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 12, pp. 74—83. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-74-83.

12. Zubov V. P. Applied technologies and current problems of resource-saving in underground mining of stratified deposits. Gornyi Zhurnal. 2018, no 6, pp. 77—83. [In Russ].

13. Sidorov D. V., Ponomarenko T. V., Larichkin F. D., Vorob'ev A. G. Economic justification of innovative solutions on loss reduction in the aluminium sector of Russia. Gornyi Zhurnal. 2018, no 6, pp. 65—68. [In Russ].

14. Koltyshev V. N., Shipeev O. V., Filippov V. N. Features of ore mining with backfilling under conditions of rock burst hazard. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 8, pp. 107–112. [In Russ]. DOI: 10.25018/0236-1493-2017-8-0-107-112.

15. Eremenko V.A., Aynbinder I. I., Patskevich P. G., Babkin E. A. Assessment of the state of rocks in underground mines at the Polar Division of Norilsk Nickel. Gornyy informatsionnoanaliticheskiy byulleten’. 2017, no 1, pp. 5–17.

16. Lushnikov V. N., Sendi M. P., Eremenko V.A., Kovalenko A. A., Ivanov I. A. Method of identifying failure zone of rock mass around mine workings and stopes by numerical modeling. Gornyi Zhurnal. 2013, no 12, pp. 11—16. [In Russ].

17. Protosenya A. G., Verbilo P. E. Strength estimation of blocky rock mass by numerical modeling. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2016, no 4, pp. 47—54. [In Russ].

18. Map3D. Available at: http://www.vap3d.com/

19. Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics. 1974. Vol. 6. No 4. Pp. 183—236.

20. Barton N. Application of Q-system and index tests to estimate shear strength and deformability of rock masses. Workshop on Norwegian method of tunneling. New Delhi, 1993, pp. 66—84.

21. Laubscher D. H. A geomechanics classification system for the rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy. 1990. Vol. 90. No 10. Pp. 257–273.

22. Terzaghi K., Peck R. B. Soil mechanics in engineering practice. Wiley, New York, 1967.

23. Rocscience. Available at: https://www.rocscience.com/

Subscribe for our dispatch