Floatability of borogypsum with perlastan

Authors: Хатькова А. Н., Никитина Л. Г., Патеюк С. А.

The article discusses the problem of accumulation, storage, use and processing of various production waste. Advantages of mining waste use as a source of manufacturing marketable products are emphasized. The study object is selected to be borogypsum containing gypsum and silicon dioxide applicable in different industries. The current processing methods of borogypsum are reviewed. A new flotation agent is proposed to extract silicon concentrate from waste of boric acid production. The mathematical planning methods are used to carry out the multi-factor experiment which reveals the optimal mode of flotation. The selected factors are: the temperature, pH, concentration of the main flotation agent, agitation time, as well as the flotation duration. The data of experimental investigation are presented for initial raw material and produced samples. The investigations were carried out using the modern physicochemical methods (spectrophotometry, IR spectroscopy, scanning electron microscopy, X-ray phase analysis), which made it possible to analyze chemical ad mineralogical compositions, as well as structures of samples. The implemented research shows that perlastan ON-60 is a promising flotation agent for borogypsum.


Keywords: Waste, secondary raw materials, borogypsum, silicon dioxide, gypsum, perlastan ON60, flotation, flotation agent, multi-factor experiment.
For citation:

Khat’kova A. N., Nikitina L. G., Pateyuk S. A. Floatability of borogypsum with perlastan. MIAB. Mining Inf. Anal. Bull. 2019;(11):160-171. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0160-171.

Issue number: 11
Year: 2019
Page number: 160-171
ISBN: 0236-1493
UDK: 661.654.002.8:622.7
DOI: 10.25018/0236-1493-2019-11-0-160-171
Article receipt date: 12.03.2019
Date of review receipt: 20.09.2019
Date of the editorial board′s decision on the article′s publishing: 10.10.2019
About authors:

A.N. Khat’kova1, Dr. Sci. (Eng.), Professor,
Vice-Rector for Research and Innovation, e-mail: Alisa1965.65@mail.ru,
L.G. Nikitina1, Cand. Sci. (Eng.), Assistant Professor, Deputy Dean
for Educational Activities of the Mining Faculty, e-mail: nikitina-lg@mail.ru,
S.A. Pateyuk1, Graduate Student, e-mail: nesvvik@gmail.com,
1 Transbaikal State University, 672039, Chita, Russia.

For contacts:

L. G. Nikitina, e-mail: nikitina-lg@mail.ru.


1. Pullum L. V., Boger D., Sofra F. Hydraulic Mineral Waste Transport and Storage. Annual Review of Fluid Mechanics. 2018. Vol. 50. Pp. 157—185.
2. Negm A. M., Shareef N. Waste Management in MENA Regions. Switzerland: Springer, 2019. Pp. 1—11.
3. Sagdeeva G. S., Patrakova G. R. Recycling of production and consumption waste using their resource potential. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014, no 6, pp. 194—198. [In Russ].
4. Nikiforov I. V., Mustafin I. A., Gil'mutdinov A. T., Akhmetov A. F., Lapshin I. G. Study of boiler fuel compositions based on sludge processing products and petrochemical residues. Bashkirskiy khimicheskiy zhurnal. 2016, no 3, pp. 89—93. [In Russ].
5. Oelofse S. H. H., Hobbs P. J., Rascher J., Cobbing J. E. The pollution and destruction threat of gold mining waste on the Witwatersrand. A West Rand case study. 10th International symposium on Environmental Issues and Waste Management in Energy and Mineral Production (SWEMP, 2007) (Bangkok, Thailand, 11—13 December 2007). editorial board: Dr. Raj Singhal et. Mine Planning and Equipment Selection, USA, 2007, 973 p.
6. European commission URL: http://ec.europa.eu/environment/waste/mining/index.htm (accessed 26.02.2019).
7. Singhania R. R., Agarwal R. A., Kumar R. P., Sukumaran R. K. Waste to Wealth. Singapore: Springer, 2018, Pp. 1—15.
8. Amadzieva N. A., Khizriev A. Sh. Renewable energy as one of the factors of energy saving in the rural territories of the Republic of Dagestan. Regional'nye problemy preobrazovaniya ekonomiki. 2016, no 2 (64), pp. 90—96. [In Russ].
9. Kudelko J. Effectiveness of mineral waste management. International Journal of Mining, Reclamation and Environment. 2018. No 1—9. Pp. 440—448. DOI: 1080/17480930.2018.1438036.
10. Sugonyako D. V., Zenitova L. A. Silicon dioxide as a reinforcing filler of polymeric materials. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2015. Vol. 18, no 5, pp. 94—100. [In Russ].
11. Khaliullina A. A., Musin I. N., Ksembaev S. S., Salakhov A. K., Razina I. S. Development of a dental-maxillary simulator using polymeric composite materials. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013, no 5(16), pp. 94—96. [In Russ].
12. Gordienko P. S., Kozin A. V., YArusova S. B., Zgiblyy I. G. Complex processing of waste production of boric acid to produce materials for the construction industry. Gornyy informatsionnoanaliticheskiy byulleten’. 2014, no S4—9, pp. 60—66. [In Russ].
13. Bulut G., Atak S., Tuncer E. Celestite-gypsum separation by flotation. The Canadian Journal of Metallurgy and Materials Science. 2008. Issue 2. Vol. 47. Pp. 119—126.
14. Matsuno T., Kadota M., Ishiguro Y. Separation of Gypsum by the Flotation Process. Bulletin of the Society of Salt Science. 1958. Vol. 12. Issue 2. Pp. 73—78.
15. Dolgikh O. L. Use of perlastan reagent as an alternative to oleic acid during fluorite flotation. Vestnik Zabaykal'skogo gosudarstvennogo universiteta. 2012, no 9 (88), pp. 20—26. [In Russ].
16. Malyshev V. P. Matematicheskoe planirovanie metallurgicheskogo i khimicheskogo eksperimenta [Mathematical planning of metallurgical and chemical experiment], Alma-Ata, Nauka, 1977, 35 p.
17. Efimova A. I. Spetsial'nyy fizicheskiy praktikum. Infrakrasnaya spektroskopiya nanostruktrurirovannykh poluprovodnikov i dielektrikov [Special physical workshop. Infrared spectroscopy of nanostructured semiconductors and dielectrics], Moscow, MGU, 2014, 32 p.

Mining World Russia
Subscribe for our dispatch