Analyzing energy processes in power line of operating open-pit excavator

Key features of electric energy processes in mechatronic systems of electric excavators are discussed. Electrical power is supplied to excavator with 1st harmonic. In mechatronic system, electrical power is converted to mechanical work together with accumulation of kinetic and potential energies and with their mutual transformation inside movable elements of the machine, as well as with the dynamoelectric conversion of energy. During electric energy conversion, generation of higher harmonics takes place owing to the 1st harmonic energy. The load of the recuperated energy and higher harmonic generator is the power line, connected electrical equipment and the power source. When the power factor decreases, the loss of energy in the power line increases in proportion to the power factor square. From the analysis of energy processes and the accomplished experimental research, the key relationships are established between the consumed and recuperated energy during operation of open-pit excavator EKG-20 with ac-drive. Active energy recuperated by interconnected main drives of the excavator and united by the common dc link is partly taken by the main drives and partly goes, via the main transformer, to the power line. The auxiliary transformer connected to the power line takes some recuperated energy to power the ancillary electrics of the excavator. The beneficial use of the recuperated energy portion (more than 30%) by the ancillary electrics of excavators is experimentally proved. Higher efficiency of energy transmission from the source to a consumer is achieved owing to the use of compensating devices improving power factor and energy quality, due to reduction in input current of electric motors as well as thanks to the electric drive control algorithms ensuring electromagnetic compatibility of equipment.

Keywords: mechatronics, excavator, energy, electric drive, power factor, recuperation, efficiency, control system.
For citation:

Malafeev S. I., Malafeev S. S. Analyzing energy processes in power line of operating open-pit excavator. MIAB. Mining Inf. Anal. Bull. 2020;(3):126-137. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-126-137.

Issue number: 3
Year: 2020
Page number: 126-137
ISBN: 0236-1493
UDK: 622.271.3
DOI: 10.25018/0236-1493-2020-3-0-126-137
Article receipt date: 09.01.2019
Date of review receipt: 27.05.2019
Date of the editorial board′s decision on the article′s publishing: 20.02.2020
About authors:

S.I. Malafeev, Dr. Sci. (Eng.), Professor, Chief Researcher, «Joint Power» Company Ltd, 111672, Moscow, Russia, Stoletovs Vladimir State University, 600000, Vladimir, Russia, e-mail:,,
S.S. Malafeev, Candidate of Technical Sciences, Lecturer, e-mail:, Vladimir Polytechnic College, 600001, Vladimir, Russia.

For contacts:

S.I. Malafeev,;


1. Energy efficiency in Minerals Industry. Best Practicies and Research Directions. AwuahOffei K. (Ed.). Springer International Publishing AG, 2018, 329 p. DOI: 10.1007/978-3-31954199-0.

2. Solov'eva N.A., Krasheninnikov A.I., Zyryanov I.V., Rybnikov A.V. About energy saving and increasing an energy efficiency in AK «ALROSA» (PAO). Gornoe oborudovanie i elektromekhanika. 2016, no 2, pp. 16—19. [In Russ].

3. Malafeev S.I., Serebrennikov N.A. Increasing energy efficiency of mining excavators based on modernization of electrical equipment and control systems. Ugol'. 2018, no 10, pp. 30—34. [In Russ]. DOI: 10.18796/0041-5790-2018-10-30-34.

4. Levesque M., Millar D., Paraszczak J. Energy and mining — the home truths. Journal of Cleaner Production. 2014. Vol. 84, no 1. DOI: 10.1016/j.jclepro.2013.12.088.

5. Bise C.J. Modern american coal mining. Methods and applications. Society for Mining, Metallurgy and Exploration, 2013, 563 p.

6. Makhno D.E. Ekspluatatsiya i remont kar'ernykh ekskavatorov v usloviyakh Severa [Exploitation and repairing of mining excavators at Nordic conditions], Moscow, Nedra, 1984, 133 p.

7. Chulkov N.N. Raschet privodov kar'ernykh mashin [Design of drives of mining excavators], Moscow, Nedra, 1987, 196 p.

8. Guzman M.V., Valenzuela M.A. Integrated mechanical-electrical modeling of an AC electric mining shovel and evaluation of power requirements during a truck loading cycle. IEEE Transactions on industry applications, 2015, Vol. 51, No 3, pp. 2590—2599. DOI: 10.1109/ TIA.2014.2375378.

9. Casson M. Dragline retrofit for AC motion power / «SYMPHOS 2013» 2nd International Symposium on Innovation and Technology in the Phosphate. Procedia Engineering 83, 2014, pp. 86—89. DOI: 10.1016/j.proeng.2014.09.017.

10. Tangaev I.A. Energoemkost' protsessov dobychi i pererabotki poleznykh iskopaemykh [Energy capacity of processes of mining and processing of minerals], Moscow, Nedra, 1986, 231 p.

11. Kotlyarchuk V.A., Goncharov A.F. Elektrosnabzhenie ekskavatorov [Electrical power supply of excavators], Moscow, Nedra, 1980, 175 p.

12. Chulkov N.N. Elektrifikatsiya kar'erov [Electrification of mining pits], Moscow, Nedra, 1974, 344 p.

13. Morley L.A. Mine power systems. Information circular 9258. United States Bureau of Mines, 1991. 437 p.

14. Malafeev S.I., Malafeev S.S., Tikhonov Y.V. Intelligent diagnostics of mechatronic system components of career excavators in operation. Advances in Neural Computation, Machine Learning, and Cognitive Research. Selected Papers from the XIX International Conference on Neuroinformatics, October 2—6, 2017, Moscow, Russia. Springer International Publishing AG, 2018. Pp. 110—116. DOI: 10.1007/978-3-319-66604-4_17.

15. Pandit P., Mazumdar J., May T., Koellner W.G. Real-time power quality meashurements from a conventional AC dragline. IEEE Transactions on Industry Applications, 2010, Vol. 46, No 5, pp. 1755—1763. DOI 10.1109/TIA.2010.2057470.

16. Aqueveque P., Wiechmann E.P., Henríquez J.A., Muñoz L.G. Energy quality and efficiency of an open pit mine distribution system: evaluation and solution. IEEE Transactions on Industry Applications. 2016, Vol. 52, No 1, pp. 580—588. DOI: 10.1109/TIA.2015.2464172.

17. Malafeev S.I., Malafeev S.S., Serebrennikov N.A. Computer simulation of mechatronic systems of one-paddle excavators. Gornoe oborudovanie i elektromekhanika. 2011, no 5, pp. 24—29. [In Russ].

18. Schetchik elektricheskoy energii trekhfaznyy mnogofunktsional'nyy KEYA «ZNAK+». Rukovodstvo po ekspluatatsii. MTNTS.424359.0030-RE-05 [Multifunctional electrical power meter «ZNAK+». User manual. MTNC.424359.0030-RE-05], Moscow, 2005, 49 p.

19. Andreev A.N., Nesgovorov E.V., Korolev T.V., Kolesnichenko D.A., Kolesnichenko N.M. Efficiency of internal energy recuperation in frequency-controlled electrical drive. Vestnik Cherepovetskogo gosudarstvennogo universiteta. 2015, no 7, pp. 5—8. [In Russ].

20.Владимиров Д.Я.Intelligent mining pit:evolution or revolution? Gornyyinformatsionnoanaliticheskiy byulleten’. 2015. Special edition 45-1, pp. 77—82. [In Russ].

21. P&H 2650 CX Hybrid Shovel. Joy Global, 2016. 7 p.

22. Kolner W., Madhavarao G. Peak shaver/rate rise limiter for electric rope shovels and draglines. June 13, 2013 MEMSA Annual Meeting, Clearwater, Fl. 2013. 24 p.

23. Bilgin H.F., Muammer Ermis, Kose K.N., Alper Cetin, etc. Reactive-power compensation of coal mining excavators by using a new-generation STATCOM. IEEE Transactions on Industry Applications, 2007, Vol. 43, No 1, pp. 97—110. DOI: 10.1109/TIA.2006.887308.

24. Shprekher D.M., Babokin G.I. System of technical diagnostic of electromechanical complexes. Kontrol'. Diagnostika. 2016, no 3, pp. 52—56. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.