Development of methods and means for integrated geo-information-based analysis of influence exerted by nonlinear deformation and wave processes induced by seismic forces on geomechanical behavior of pit walls and on gas-dynamic activity in coal mines in Kuzbass

The huge experience and ample data are available on the features of seismic processes stimulated by earthquakes. The situation is different in the field of mining-induced seismicity, first of all, in terms of understanding of the cause effect relationship and finding of quantitative relationships between seismicity and mining technologies with large-scale blasting in the regions of heavy subsoil use in the conditions of active tectonics. One of such regions is Kuzbass adjacent to the Altai–Sayan folded area in the south of West Siberia. The gained experience is generalized in the two-volume monograph [1]. The monograph states that safety of mining is achievable both with opencast and underground geotechnologies. A new stage in understanding of the problem difficulty arrived with the newly discovered nonlinear pendulum elastic waves and ‘piston’ behavior of mass and gas exchange in the high-stress hierarchy of blocks in surrounding rock mass around underground openings. In this respect, this article defines an urgent problem of geomechanically, geodynamically and geoecologically safe subsoil use in the south of West Siberia based on development of informational methods and facilities for the integrated assessment of influence exerted by nonlinear deformation and wave processes induced by seismic events and blasting on geomechanics of pit wall rock mass and on gas dynamics in coal mines in Kuzbass.

Keywords: seismic activity, cloud geoinformation technologies, nonlinear deformation and wave processes, mechanical erosion, coal–methane, open pit coal mines, underground coal mines, satellite observation and hyperspectral survey, mining and geological conditions, climatic and natural conditions, massive blasting, earthquakes, Kuzbass, Altai–Sayan seismically active folded area.
For citation:

Oparin V. N., Potapov V. P., Kiryaeva T.A., Yushkin V. F. Development of methods and means for integrated geo-information-based analysis of influence exerted by nonlinear deformation and wave processes induced by seismic forces on geomechanical behavior of pit walls and on gas-dynamic activity in coal mines in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2020;(8):5-39. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-5-39.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 20-05-00051.

Issue number: 8
Year: 2020
Page number: 5-39
ISBN: 0236-1493
UDK: 550.310 + 622
DOI: 10.25018/0236-1493-2020-8-0-5-39
Article receipt date: 09.04.2020
Date of review receipt: 22.06.2020
Date of the editorial board′s decision on the article′s publishing: 20.07.2020
About authors:

V.N. Oparin1, Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Phys. Mathem.), Professor, Head of Department, e-mail: oparin@misd.ru,
V.P. Potapov1, Dr. Sci. (Eng.), Professor, Director, Kemerovo Branch of the Federal Research Center for Information and Computational Technologies, 650025, Kemerovo, Russia, e-mail: ict@ict.nsc.ru,
T.A. Kiryaeva1, Cand. Sci. (Eng.), Senior Researcher, e-mail: coalmetan@mail.ru,
V.F. Yushkin1, Dr. Sci. (Eng.), Leading Researcher, e-mail: L14@ngs.ru,
1 Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.

 

For contacts:

V.N. Oparin, e-mail: oparin@misd.ru.

Bibliography:

1. Geomekhanicheskie polya i protsessy: eksperimental'no-analiticheskie issledovaniya formirovaniya i razvitiya ochagovykh zon katastroficheskikh sobytiy v gornotekhnicheskikh i prirodnykh sistemakh. Pod red. N. N. Mel'nikova [Geomechanical fields and processes: experimental and analytical research into initiation and growth of source zones of disastrous events in geotechnical and natural systems. Mel'nikov N. N. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2018. Vol. 1, 549 p.; 2019. Vol. 2, 546 p.

2. Oparin V. N., Yushkin V. F., Porokhovsky N. N., Grishin A. N., Kulinich N. A., Rublev D. E., Yushkin A. V. Effect of large-scale blasting on spectrum of seismic waves in a stone quarry. Journal of Mining Science. 2014. Vol. 50, No 5. Pp. 865—877.

3. Wang Kaixing, Pan Yishan, Dou Linming. Energy transfer in block-rock mass during propagation of pendulum-type waves. Chinese J. Geotech. Eng. 2016. Vol. 38, No 12. Pp. 2309—2314.

4. De La Torre Ch. A., Bradley B. A., Lee R. L. Modeling nonlinear site effects in physicsbased ground motion simulations of the 2010—2011 Canterbury earthquake sequence. Earthquake Spectra. 2020. Vol. 36. Pp. 856—879. DOI: 10.1177/8755293019891729.

5. Bradley B. A., Razafindrakoto H. N. T, Polak V. Ground-motion observations from the 14 November 2016 Mw 7.8 Kaikora, New Zealand earthquake and insights from broadband simulations. Seismological Research Letters. 2017. Vol. 88. No 3. Pp. 740—756. DOI: 10.1785/0220160225.

6. Deschenes M., Wood C., Wotherspoon L., Bradley B. Development of deep shear wave velocity profiles in the Canterbury Plains, New Zealand. Earthquake Spectra. 2018. Vol. 34. No 3. Pp. 1065—1089.

7. Rice John Mekhanika ochaga zemletryaseniy [Earthquake focus mechanics], Moscow, Mir, 1982, 217 p.

8. Rautian T. G., KHalturin V. I. Ochagovye spektry zemletryaseniy. Zemletryaseniya i protsessy ikh podgotovki [Focal spectra of earthquakes. Earthquakes and their incipience], Moscow, Nauka, 1991, pp. 82—93.

9. Sobolev G. A., Ponomarev A. V. Fizika zemletryaseniy i predvestniki [Earthquakes: Physics and precursors], Moscow, Nauka, 2003, 270 p.

10. Vzryvy i zemletryaseniya na territorii Evropeyskoy chasti Rossii. Pod. red. V. V. Adushkina, A.A. Malovichko [Blasting and earthquakes in the territory of European Russia. Adushkin V. V., Malovichko A. A. (Eds.)], Moscow, GEOS, 2013, 384 p.

11. Kocharyan G. G. Geomekhanika razlomov. Pod. red. V.V. Adushkina [Faulting geomechanics. Adushkin V. V. (Ed.)], Moscow, GEOS, 2016, 424 p.

12. Sadovskiy M. A., Bolkhovitinov L. G., Pisarenko V. F. Deformirovanie sredy i seysmicheskiy protsess [Deformation of a medium and seismic process], Moscow, Nauka, 1987, 100 p.

13. Adushkin V. V., Oparin V. N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed media. Journal of Mining Science. Pp. I: 2012, Vol. 48, No 2, Pp. 203—222; Pp. II: 2013, Vol. 49, No 2, Pp. 175—209; Pp. III: 2014, Vol. 50, No 4, Pp. 623— 645; Pp. IV: 2016, Vol. 52, No 1, Pp. 1—35.

14. Tekhnogennaya seysmichnost' pri gornykh rabotakh: modeli ochagov, prognoz, profilaktika. Pod red. N. N. Mel'nikova [Induced seismicity in mining: models of source areas, prediction, precaution. Mel'nikov N. N. (Ed.)]. Parts 1, 2. Apatity, Izd-vo KNTS RAN, 2004, 422 p.

15. Destruktsiya zemnoy kory i protsessy samoorganizatsii v oblastyakh sil'nogo tekhnogennogo vozdeystviya. Pod red. N. N. Mel'nikova [Destruction of the Earth’s crust and self-organization processes in the areas of heavy manmade impact. Mel'nikov N. N. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2019, 632 p.

16. Sovremennaya geodinamika massiva gornykh porod verkhney chasti litosfery: istoki, parametry, vozdeystvie na ob"ekty nedropol'zovaniya. Pod red. M. D. Novopashina [Modern geodynamics in the top lithosphere: sources, parameters, impact. Novopashin M. D. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2008, 449 p.

17. Bychkov I. V., Vladimirov D. Ya., Oparin V. N., Potapov V. P., Shokin Yu. I. Mining information science and Big Data concept for integrated safety monitoring in subsoil management. Journal of Mining Science. 2016. Vol. 52, No 6. Pp. 1195—1209.

18. Bychkov I. V., Oparin V. N., Potapov V. P. Cloud technologies in mining geoinformation science. Journal of Mining Science. 2014. Vol. 50, No 1. Pp. 142—154.

19. Potapov V. P., Popov S. E., Kostylev M. A. Radar data processing technique based on the mass-parallel task execution system Apache Spark. Vychislitel'nye tekhnologii. 2017. vol. 22, no 1, pp. 60—74

20. Moskvichev V. V., Bychkov I. V., Potapov V. P., Taseyko O. V., Shokin Yu. I.Informational system of the territorial risk and safety control. Vestnik Rossiyskoy akademii nauk. 2017, vol. 7, no 8, pp. 696—705. [In Russ].

21. Bagaev S. N., Orlov V.A., Panov S. V., Parushkin M. D. Pendulum waves and their singling out in the laser deformograph records of the large earthquakes. Journal of Mining Science. 2010. Vol. 46. No 3. Р. 217 — 224.

22. Oparin V. N., Adushkin V. V., Kiryaeva T.A., Potapov V. P., Cherepov A. A., Tyukhrin V. G., Glumov A. V. Effect of pendulum waves from earthquakes on gas-dynamic behavior of coal seams in Kuzbass. Journal of Mining Science. 2018. Vol. 54. No 1, pp. 3—14.

23. Oparin V. N. Adushkin V. V., Kiryaeva T.A., Potapov V. P. Regional clustering of coal fields in Kuzbass with respect to gas-dynamics activity. MIAB. Mining Inf. Anal. Bull. Part I. 2018, no 9, pp. 5—24. [In Russ]. DOI: 10.25018/0236-1493-2018-9-0-5-24. Part II. 2018, no 10, pp. 5—29. [In Russ]. DOI: 10.25018/0236-1493-2018-10-0-5-29.

24. http://topuch.ru/v-p-ananeev-a-d-potapov/index10.html#pages.

25. Oparin V. N. Тheoretical fundamentals to describe interaction of geomechanical and physicochemical processes in coal seams. Journal of Mining Science. 2017. Vol. 53, No 2. Pp. 201—215.

26. Kiryaeva T. A. Razrabotka metodov energeticheskogo analiza i prognozirovaniya gazodinamicheskoy aktivnosti uglemetanovykh plastov Kuzbassa [Methods for energy analysis and gas dynamics prediction in coal–methane beds in Kuzbass], LAP LAMBERT Academic Publishing, 2019, 332 p.

27. Zhou A. T., Wang K., Kiryaeva T.A., Oparin V. N. Regularities of two-phase gas flow under coal and gas outbursts in mines. Journal of Mining Science. 2017. Vol. 53, No 3. Pp. 533—543.

28. Wang K. X., Aleksandrova N. I., Pan Y. S., Oparin V. N., Dou L. M., Chanyshev A. I. Effect of block medium parameters on energy dissipation. Journal of Applied Mechanics and Technical Physics. 2019. Vol. 60. No 5. Pp. 926—934.

29. Oparin V. N., Adushkin V. V., Yushkin V. F., Potapov V. P. Influence of natural climate and mining-induced impact on mechanical erosion and seismic noise in the areas of open pit coal mines in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2019;(9):72-101. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-72-101.

30. Lazarevich T. I., Mazikin V. P., Malyy I. A., Polyakov A. N., Kharkevich A. S., Shabarov A. N. Geodinamicheskoe rayonirovanie Yuzhnogo Kuzbassa [Geodynamic zoning in South Kuzbass], Kemerovo, 2006, 181 p.

31. Oparin V. N., Yushkin V. F., Klimko V. K., Rublev D. E., Izotov A. S., Ivanov A. V. Analytical description of surface of blasting-formed underground cavities by laser scanning data. Journal of Mining Science. 2017. Vol. 53. No 4. Pp. 789—800.

32. Oparin V. N., Seredovich V.A., Yushkin V. F., Ivanov A. V., Prokop’eva S. A. Application of laser scanning for developing a 3D digital model of an open-pit side surface. Journal of Mining Science. 2007. Vol. 43. No 5. Рp. 545—554.

33. http://www.gisa.ru/45968.html/

34. http://www.idee.es/

35. http://www.geoportail.fr

36. http://www.geoconnections.org

37. http://geodata.gov

38. http://geoportal.ntsomz.ru/

39. http://www.geogr.msu.ru:8082/api/index.html

40. Sadovskiy M. A. Natural lumpiness of rocks. Doklady Akademii nauk. 1979, vol. 247, no 4, pp. 829—831. [In Russ].

41. Sadovskiy M. A., Bolkhovitinov L. G., Pisarenko V. F. Discreteness property of rocks. Sadovskiy M. A. Izbrannye trudy [Sadovskiy M. A. Selected works], Moscow, Nauka, 2004, pp. 337—352.

42. Oparin V. N., Tanayno A. S. Kanonicheskaya shkala ierarkhicheskikh predstavleniy v gornom porodovedenii [Canonical scale of hierarchical representation in the rock science], Novosibirsk, Nauka, 2011, 264 p.

43. Oparin V. N., Potapov V. P., Giniyatullina O. L., Bykov A. A., Schastlivtsev E. L. Integrated monitoring of induced air pollution in mining regions. Journal of Mining Science. 2017. Vol. 53, No 5. Pp. 945—953.

44. Oparin V. N., Adushkin V. V., Vostrikov V. I., Usol'tseva O. M., Mulev S. N., Yushkin V. F., Kiryaeva T.A., Potapov V. P. An experimental and theoretical framework of nonlinear geotomography. Part I: Research problem statement and justification. MIAB. Mining Inf. Anal. Bull. 2019;(1):5-25. [In Russ]. DOI: 10.25018/0236-1493-2019-01-0-5-25.

45. Logov A. B., Oparin V. N., Potapov V. P., Schastlivtsev E. L., Yukina N. I. Entropy analysis of process wastewater composition in mineral mining region. Journal of Mining Science. 2015. Vol. 51, No 1. Pp. 186—196.

46. Alekseev A. D., Ayruni A. T., Vasyuchkov V. F., Zverev I. V., Sinolitskiy V. V., Dolgova M. O., Ettinger I. D. Svoystvo organicheskogo veshchestva uglya obrazovyvat' s gazami metastabil'nye odnofaznye sistemy po tipu tverdykh rastvorov: nauchnoe otkrytie, RAEN, diplom № 9 [Properties of coal organics to form meta-stable single-phase systems by type of solid solutions], 1994.

47. Malinnikova O. N., Ul'yanova E. V., Dolgova M. O., Zverev I. V. Microstructural changes in coal in consequence of coal and gas outbursts. Gornyi Zhurnal. 2017, no 11, pp. 27—32. [In Russ].

48. Shpak A. P., Alekseev A. D., Ulyanova E. V., Trachevskiy V. V., Chistokletov V. N. Nature of methane generation in coal layers. Doklady NAN Ukrainy. 2012. No 6. pp. 105—110.

49. Zakharov V. N., Malinnikova O. N. Investigation of structural peculiarities of coals of outburst-prone seams. Zapiski Gornogo instituta. 2014. Vol. 210. pp. 43—52. [In Russ].

50. Zhou H., Dai H., Ge C. Quality and quantity of pre-drainage methane and responding strategies in Chinese outburst coal mines. Arabian Journal of Geosciences. 2016. Vol. 9. Pp. 1—14.

51. Han Y., Wang J., Dong Y., Hou Q., Pan J. The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel. 2017. Vol. 206. Pp. 1—9.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.