Integrated accident risk assessment in mines

The mining is carried out in highly complicated geological and geotechnical conditions nowadays, which determines the relevance of this study. Accidents and emergencies result from ignorance of rock mass properties in project designs. The problem on integrated assessment of risk of injuries, accidents and emergencies yet remains to be solved in mines. The current techniques of accident risk analysis and risk management in mines provide inaccurate results and lack interconnection of all identified hazards. It is necessary to improve the existing procedures of risk assessment and to develop and scientifically substantiate new approaches to risk assessment and risk management in mines. The algorithms of accident risk assessment and reduction in mines should be based on construction of a fault tree with regard to cause-and-effect relations between geotechnical, geological and organizational factors. The main accident risks are identified based on the information from mine project documents, accident localization and management plans, accident statistics, and data of accident investigations. The accomplished analysis of the statistical evidence and mining conditions produced scenarios of various accidents: exogenous fire, gas and dust explosion, blasting of explosives, rock burst, mine damage and flooding. In drawing a fault tree, the minimal combinations of accidents and their minimal paths are determined, and a domino effect is taken into account. The interplay of risks initiating and advancing accidents and (or) emergencies in mines is found.

 

Acknowledgements:
For citation:

Pelipenko M. V., Balovtsev S. V., Aynbinder I. I. Integrated accident risk assessment in mines. MIAB. Mining Inf. Anal. Bull. 2019;(11):180-192. [In Russ]. DOI: 10.25018/0236-1493-201911-0-180-192.

Issue number: 11
Year: 2019
Page number: 180-192
ISBN: 0236-1493
UDK: 622.8
DOI: 10.25018/0236-1493-2019-11-0-180-192
Authors: Pelipenko M. V., Balovtsev S. V., Aynbinder I. I.
About authors:

M.V. Pelipenko, General Director, e-mail: pelipenkomv@mail.ru,
OOO «Security and Safety Technologies», Moscow, Russia,
S.V. Balovtsev, Cand. Sci. (Eng.), Assistant Professor,
Mining Institute, National University of Science and Technology «MISiS»,
119049, Moscow, Russia, e-mail: Balovcev@yandex.ru,
I.I. Aynbinder, Dr. Sci. (Eng.), Professor, Head of Department,
Institute of Problems of Comprehensive Exploitation of Mineral Resources
of Russian Academy of Sciences, 111020, Moscow, Russia.

Keywords: Safety substantiation, mine, accident risk assessment, emergency, aerological accident risk, rock bursts, mine fires, rock falls, flooding, explosion.
Bibliography:

1. Aynbinder I. I., Kaplunov D. R. Risk-based approach to selection of deep-level mining technology. MIAB. Mining Inf. Anal. Bull., 2019;4:5-19. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-5-19.
2. Prikaz Rostekhnadzora ot 15.07.2013 № 306 «Ob utverzhdenii Federal'nykh norm i pravil v oblasti promyshlennoy bezopasnosti «Obshchie trebovaniya k obosnovaniyu bezopasnosti opasnogo proizvodstvennogo ob''ekta» [Authorization of Federal Code of Industrial Safety: General requirements to substantiation of hazard object safety. Rostekhandzor Decree No. 306 dated Jul 15, 2013]. [In Russ].
3. Prikaz Rostekhnadzora ot 11.12.2013 № 599 (red. ot 21.11.2018) «Ob utverzhdenii Federal'nykh norm i pravil v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh» [Authorization of Federal Code of Industrial Safety: Safety regulation in mining and processing of solid minerals. Rostekhnadzor Decree No. 599 dated Dec 11, 2013 (amended Nov 21, 2018)]. [In Russ].
4. Prikaz Rostekhnadzora ot 11.04.2016 № 144 «Ob utverzhdenii Rukovodstva po bezopasnosti «Metodicheskie osnovy po provedeniyu analiza opasnostey i otsenki riska avariy na opasnykh proizvodstvennykh ob''ektakh» [Authorization of Safety Manual: Procedures for hazard analysis and accident risk assessment at hazardous production objects. Rostekhnadzor Decree No. 144 dated Apr 11, 2016]. [In Russ].
5. Kostarev S. N., Sereda T. G., Lapaeva N. A. Development of automated monitoring toward flooding risk reduction in Solikamsk 2 potash mines. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Bezopasnost' i upravlenie riskami. 2015, no 3, pp. 94—102. [In Russ].
6. Zubov V. P., Smychnik A. D. Flooding risk reduction due to ground water inrush in potash mines. Zapiski Gornogo instituta. 2015. Vol. 215, pp. 29—37. [In Russ].
7. Fedotova Yu. V., Panin V. I. Geodynamic risk value—An objective index of rockburst hazard prevention efficiency (in terms of the Khibiny apatite mines). Fundamental'nye i prikladnye voprosy gornykh nauk. 2017. Vol. 4, no 3, pp. 97—103. [In Russ].
8. Kulikova E. Yu. Estimation of ecological properties of polymeric materials in underground construction. Ekologiya i promyshlennost' Rossii. Vol. 20. №3. 2016, pp. 28—31. [In Russ].
9. Dudko K. L., Shikanov A. I. Prediction procedure of rock bursts in mines. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2015, no 4 (110), pp. 3—9. [In Russ].
10. Lovchikov A. V. Difference in rock burst hazards in metal and coal mines. Fundamental'nye i prikladnye voprosy gornykh nauk. 2017. Vol. 4, no 2, pp. 105—111. [In Russ].
11. Filin A. E., Zinovieva O. M., Kolesnikova L. A., Merkulova A. M. Prospects of safety control in combination of mining and metallurgy industries. Eurasian Mining. 2018. No. 1. pp. 31—34. DOI: 10.17580/em.2018.01.07.
12. Owoseni J. O., Tamarautobou E. U., Asiwaju-Bello Y. A. Application Sequential Analysis and Geographic Information Systems for Hydrochemical Evolution Survej, Shagari Environ, Southwestern Nigeria. Amerikan International Journal of Contemporary Reserch. 2013. Vol. 3. No 3, pp. 38—48.
13. Hisafumi Asaue, Naoyuki Tadakumsa, Katsuaki Koike Application of GIS to Hydrogeological Structure Modeling Aimed at Conservation of Groundwater Resources. Geoinformatics. 2014. Vol. 25, Iss. 3. pp. 159—168.
14. Belkhiri L., Narany T. S. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of Groundwater quality. Water Resources Management. 2015. Vol. 29, Iss. 6. pp. 2073—2089.
15. Jalbout A., Simser B. Rock mechanics tools for mining in high stress ground conditions at Nickel Rim South Mine. Newsletter (Australian Centre for Geomechanics), vol. 46, December 2017.
16. Alymov V. T., Tarasova N. P. Tekhnogennyy risk: Analiz i otsenka [Anthropogenic risk: Analysis and assessment], Moscow, IKTS «Akademkniga». 2004. 118 p.
17. Balovtsev S. V. Analysis of cause-and-effects between events resulting in emergencies in coal mines. Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 7, pp. 328—332. [In Russ].
18. Balovtsev S. V. Prediction of aerological accident risk in working areas in coal mines. Gornyy informatsionno-analiticheskiy byulleten’. 2015. Special edition 16, pp. 3—8. [In Russ].
19. Lebedev V. S., Skopintseva O. V. Residual gas components in coal seams: Composition, content, potential hazard. Gornyy zhurnal. 2017, no 4, pp. 84—86. DOI: 10. 17580/gzh.2017.04.17. [In Russ].

Subscribe for our dispatch