Kaiser effect performance in anthracite as an indicator of the rock resistance to cryo-thermal treatment

The article presents the experimental studies into the stress memory in acoustic emission (Kaiser effect) in anthracite samples subjected to different number of freeze–thaw cycles. All in all, 6 groups of relatively uniform samples were tested; one group (0) was a reference set unexposed to cryo-thermal effects; the number of a group conformed with the number of treatment cycles. After the cryo-thermal action, all samples were subjected by two cycles of mechanical loading up to maximum stresses of 10 and 14 MPa, respectively. During a loading cycle, acoustic emission activity of a sample was measured, and the Kaiser effect in the second cycle of loading was assessed by two characteristics. These characteristics were the factor of retention FR of the stress memory, or the ratio of the stress of emission initiation in the second cycle to the maximal stress of the first cycle, and the index Δ, or the ratio of the averaged acoustic emission activities before and after the moment of the Kaiser effect. The values of FR and Δ are obtained and analyzed as functions of the number of anthracite freeze–thaw cycles. The value of FR drops but Δ grows with increasing cryogenic disintegration of coal. The maximal change in FR and Δ, and, accordingly, the highest dynamics of damage in anthracite takes place in the first cycles of cryo-thermal treatment.
Key words: anthracite, cyclic freezing–thawing, cyclic mechanical loading, cryogenic disintegration, acoustic emission activity, Kaiser effect.

 

Keywords: anthracite, cyclic freezing–thawing, cyclic mechanical loading, cryogenic disintegration, acoustic emission activity, Kaiser effect.
For citation:

Shkuratnik V. L., Nikolenko P. V., Anufrenkova P. S. Kaiser effect performance in anthracite as an indicator of the rock resistance to cryo-thermal treatment. MIAB. Mining Inf. Anal. Bull. 2020;(7):5-12. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-5-12.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Grant No. 18-05-70002.

Issue number: 7
Year: 2020
Page number: 5-12
ISBN: 0236-1493
UDK: 622.02:539.2
DOI: 10.25018/0236-1493-2020-7-0-5-12
Article receipt date: 20.03.2020
Date of review receipt: 06.05.2020
Date of the editorial board′s decision on the article′s publishing: 20.06.2020
About authors:

V.L. Shkuratnik1, Dr. Sci. (Eng.), Professor,
P.V. Nikolenko1, Cand. Sci. (Eng.), Assistant Professor, е-mail: p.nikolenko@misis.ru,
P.S. Anufrenkova1, Graduate Student,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.L. Shkuratnik, е-mail: ftkp@mail.ru.

Bibliography:

1. Epshtein S. A., Nikitina I. M., Agarkov K. V., Nesterova V. G., Minaev V. I. Effects of cyclic freezing and thawing on coals quality indices. MIAB. Mining Inf. Anal. Bull. 2019;(6):5-18. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-5-18.

2. Epshtein S. A., Kossovich E. L., Gavrilova D. I., Agarkov K. V. Effects of cyclic freezethawing of coals on their ability to oxidize. Gornyi Zhurnal, 2019, no 7, pp. 71—76. [In Russ]. DOI: 10.17580/gzh.2019.07.04.

3. Aoki K., Hibiya K., Yoshida T. Storage of refrigerated liquefied gases in rock caverns: characteristics of rock under very low temperatures. Tunnelling and Underground Space Technology. 1990. Vol. 5. No 4. Pp. 319—325.

4. Dwivedi R. D., Soni A. K., Goel R. K., Dube A. K. Fracture toughness of rocks under subzero temperature conditions. International Journal of Rock Mechanics and Mining Sciences. 2000. Vol. 37. No 8. Pp. 1267—1275.

5. Shkuratnik V. L., Nikolenko P. V., Koshelev A. E. Stress dependence of elastic p-wave velocity and amplitude in coal specimens under varied loading conditions. Journal of Mining Science. 2016. Vol. 52. No 5. Pp. 873—877.

6. Morcote A., Mavko G., Prasad M. Dynamic elastic properties of coal. Geophysics. 2010. Vol. 75. No 6. Pp. 227—234.

7. Nazarova L. A., Zakharov V. N., Shkuratnik V. L., Nazarov L. A., Protasov M. I., Nikolenko P. V. Use of tomography in stressstrain analysis of coal-rock mass by solving boundary inverse problems. Procedia Engineering. 2017. Vol. 191. Pp. 1048—1055.

8. Lavrov A. V., Shkuratnik V. L. Deformationand fracture-induced acoustic emission in rocks. Acoustical Physics. 2005. Vol. 51 (Suppl. 1). Pp. S2—S11.

9. Novikov E. A., Shkuratnik V. L., Zaytsev M. G., Oshkin R. O. Changes in properties and state of coal exposed to freeze-thaw weathering: Evidence from thermally induced acoustic emission. Earth`s Cryosphere. 2018, vol. 22, no 4, pp. 68—74. [In Russ].

10. Novikov E. A., Oshkin R. O., Shkuratnik V. L., Epshtein S. A., Dobryakova N. N. Application of thermally stimulated acoustic emission method to assess the thermal resistance and related properties of coals. International Journal of Mining Science and Technology. 2018. Vol. 28. No 2. Pp. 243—249.

11. Lavrov A. V., Shkuratnik V. L., Filimonov Yu. L. Akustoemissionnyy effekt pamyati v gornykh porodakh [Acoustic emission memory effect in rocks], Moscow, Izd-vo MGGU, 2004, 456 p.

12. Lord A. E., Koerner R. M. Field determination of prestress (existing )stress in soil and rock masses using acoustic emission. Journal of Acoustic Emission. 1985. Vol. 4. No 2/3. Pp. 11—16.

13. Panas'yan L. L., Petrovskiy M. A. On the use of the Kaiser effect for assessing stresses in rocks. Inzhenernaya geologiya. 1984, no 2, pp. 114—119.

14. Kurita K., Fujii N. Stress memory of crystalline rock in acoustic emission. Geophysical Research Letters. 1979. Vol. 6. No 1. Pp. 9—12.

15. Li C., Nordlund E. Experimental verification of the Kaiser effect in rocks. Rock Mechanics and Rock Engineering. 1993. Vol. 26. No 4. Pp. 333—351.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.