Kinetic model of ferrous iron oxidation with acidophil chemo-trophylitic microorganisms (review)

Authors: Хайнасова Т. С.

Investigations into the bio-geo-technology of metals have been carried out for a few decades. With large bulk of data collected, researchers focus on intensification of chemical-engineering processes, design of high-production equipment and improvement of quality of existing practices. To this effect, the method of mathematical modeling is used among other things. The diversity of chemical, biological, electrochemical and operational features, as well as nonlinearity of metal extraction in the bio-leaching environment complicates modeling of such systems. Ferrous iron oxidation with acidophil chemo-trophylitic microorganisms—a critical reaction in the bacterial–chemical leaching of sulfide ore. This article gives a brief review of the existing mathematical models describing the kinetics of the said reaction and the specific velocity of the biomass growth. The equations take into account influence of such factors as ferrous iron, cells of bacteria, temperature, рН, gas content, type of bioreactor, as well as the inhibitory action of ferric iron and other metals (zinc, nickel). It s shown that the majority of the existing models are based on the kinetics of enzymatic reaction, and are represented by modifications of the Michaelis–Menten and Monod equations. Despite the abundant research in the given scientific area, no integrated model including all nuance of oxidation yet exists.

Keywords: Bioleaching, biooxidation, ferrous iron, oxidation rate, rate of growth of microorganisms, kinetic models, mathematical modeling, acidophil chemo-trophylitic microorganisms.
For citation:

Khainasova TS. Kinetic model of ferrous iron oxidation with acidophil chemo-trophylitic microorganisms (review). MIAB. Mining Inf. Anal. Bull. 2019;(12):191-204. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-191-204.

Issue number: 12
Year: 2019
Page number: 191-204
ISBN: 0236-1493
UDK: 579.66:51-7
DOI: 10.25018/0236-1493-2019-12-0-191-204
Article receipt date: 05.10.2019
Date of review receipt: 29.10.2019
Date of the editorial board′s decision on the article′s publishing: 11.11.2019
About authors:

T.S. Khainasova, Cand. Sci. (Biol.), Senior Researcher,
e-mail: khainasova@yandeх.ru,
Geotechnological Scientific Research Center,
Far Eastern Brunch of Russian Academy of Sciences,
683002, Petropavlovsk-Kamchatsky, Russia.

For contacts:

T.S. Khainasova, 
e-mail: khainasova@yandeх.ru


1. Watling H. R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals. 2015;(5)1:1—60. DOI: 10.3390/min5010001.
2. Rawlings D. E., Johnson D. B. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology. 2007;153:315—324. DOI: 10.1099/mic.0.2006/001206-0.
3. Olson G. J., Brierley J. A., Brierley C. L. Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology. 2003;63:249—257. DOI 10.1007/s00253-003-1404-6.
4. Johnson D. B. Minireview. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology and Ecology. 1998;27:307—317. DOI: 10.1111/j.1574-6941.1998.tb00547.x.
5. Watling H. R. The bioleaching of nickel-copper sulfides. Hydrometallurgy. 2008;91:70—88. DOI: 10.1016/j.hydromet.2007.11.012.
6. Casas J. M., Martinez J., Moreno L., Vargas T. Bioleaching model of a copper-sulfide ore bed in heap and dump configurations. Metallurgical and Materials Transactions B. 1998;29B: 899—909.
7. Botane P., Brochot S., D'Hugues P., Spolaore P. Material size distribution in concurrent bioleaching and precipitation: Experimental procedure and modeling. Hydrometallurgy. 2013;133:7—14. DOI: 10.1016/j.hydromet.2012.11.008.
8. Ahmadi A., Ranjbar M., Schaffie M., Petersen J. Kinetic modeling of bioleaching of copper sulfide concentrates in conventional and electrochemically controlled systems. Hydrometallurgy. 2012;127—128:16—23. DOI: 10.1016/j.hydromet.2012.06.010.
9. Petersen J. Modelling of bioleach processes: Connection between science and engineering. Hydrometallurgy. 2010;104:404—409. DOI: 10.1016/j.hydromet.2010.02.023.
10. Ahmadi A., Hosseini M. R. A fuzzy logic model to predict the bioleaching efficiency of copper concentrates in stirred tank reactors. International Journal of Nonferrous Metallurgy. 2015;4:1—8. DOI: 10.4236/ijnm.2015.41001.
11. Schippers A., Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology.
12. Rittman B. E., McCarty P. L. Environmental Biotechnology: Principles and Applications. McGraw-Hill, 2001. 754 p.
13. Komov V. P., Shvedova V. N. Biokhimiya [Biochemistry], Moscow, Drofa, 2008, 638 p.
14. Modelirovanie mikrobnykh populyatsiy. Lektsiya 11 [Microbial population modeling.Lecture 11], available at: (accessed 16.09.2019).
15. Nurmi P., Ozkaya B., Kaksonen A. H., Tuovinen O. H., Puhakka J. A. Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy. 2009;97:137—145. DOI: 10.1016/j.hydromet.2009.02.003.
16. Nurmi P. Oxidation and control of iron in bioleaching solutions. Thesis for the degree of Doctor of Technology, 2009. p. 83.
17. Kumar S. R., Gandhi K. S. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology. 1990;33:524—528.
18. Haddadin J., Dagot C., Fick M. Models of bacterial leaching. Reviews. Enzyme and Microbial Technology. 1995;17:290—305.
19. Lacey D. T., Lawson F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotechnology and Bioengineering. 1970;12:29—50. DOI: 10.1002/bit.260120104.
20. Ojumu T. V., Petersen J., Searby G. E., Hansford G. S. A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching. Hydrometallurgy. 2006;83(1):21—28. DOI: 10.1016/j.hydromet.2006.03.033.
21. Meruane G., Salhe C., Wiertz J., Vargas T. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnology and Bioengineering. 2002;80(3):280—288. DOI: 10.1002/bit.10371.
22. Lizama H. M., Suzuki I. Synergistic competitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentrations of ferric iron and cells. Applied and Environmental Microbiology. 1989;55(10):2588—2591.
23. Jensen A. B., Webb C. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochemistry. 1995;30(3):225—236.
24. Nemati M., Harrison S. T. L., Hansford G. S., Webb C. Review. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochemical Engineering Journal. 1998;1:171—190.
25. Karamanev D., Nikolov L. A comparison between the reaction rates and free suspended cells bioreactors. Bioprocess Engineering. 1991;6:127—130.
26. Gomez J. M., Caro I., Cantero D. Kinetic equation for growth of Thiobacillus ferrooxidans in submerged culture over aqueous ferrous sulphate solutions. Journal of Biotechnology. 1996;48:147—152.
27. Das T., Chaudhury G. R., Ayyappan S. Use of Thiobacillus ferrooxidans for iron oxidation and precipitation. BioMetals. 1998;11:125—129.
28. Nemati M., Webb C. Inhibition effect of ferric iron on the kinetics of ferrous iron. Biotechnology Letters. 1998;20(9):873—877.
29. Boon M., Ras С., Heijnen J. J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Applied Microbiology and Biotechnology. 1999;51:813—819.
30. Meruane G., Salhe C., Wiertz J., Vargas T. Novel electrochemical—enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithio204 bacillus ferrooxidans. Biotechnology and Bioengineering, 2002;80:280—288. DOI: 10.1002/bit.10371.
31. Penev K., Karamanev D. Batch kinetics of ferrous iron oxidation by Leptospirillum ferriphilum at moderate to high total iron concentration. Biochemical Engineering Journal, 2010;50:54—62. doi:10.1016/j.bej.2010.03.004.
32. Nurmi P., Özkaya B., Kaksonen A. H., Tuovinen O. H., Puhakka J. A. Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions. Hydrometallurgy, 2009;97:137—145. doi:10.1016/j.hydromet.2009.02.003.

Mining World Russia
Subscribe for our dispatch