Aggregation methods hydrogeomechanical, electrical and dowsing to select areas of hydrogeological wells

In the territories of mountain-folded regions, aquifers in rock masses are associated with tectonic disturbances. To identify promising faults and their detailing for water supply or drainage of mining enterprises, methods of electrical exploration are quite effectively applied. When choosing promising areas for laying water supply wells in rock masses, good results are obtained from a combination of exploratory techniques for hydrogeomechanics and biolocation. Analysis of the orientation of faults in the field of modern tectonic stresses from the standpoint of hydrogeomechanics makes it possible to assume, with a high degree of probability, the kinematic type of tectonic disturbances. The characteristics of the tectonic stress field can be identified in the process of exploratory research. Dowsing allows you to identify the location, orientation and width of faults in the search area with minimal cost. A quantitative interpretation biolocation effects makes it possible to identify the most flooded areas of tectonic disturbances, which are very often associated with fault intersections. The effectiveness of dowsing is significantly reduced when studying the hydrogeological section vertically (in depth). Determining the thickness of integumentary formations, assessing the displacement, in depth, of the most flooded areas is not as reliable as studies performed in a generalized subhorizontal plane (in plan). Electrical exploration data reveals the structure of the fault in plan and vertically, allows you to assess the lithological composition of the rocks, determine the position of lithological contacts and the thickness of the cover formations. The results of electrical exploration make it possible to quantify the degree of water cut and permeability of the studied areas.

Keywords: hydrogeomechanics, biolocation, electrical exploration, tectonic stresses, faults, aquifers, permeability.
For citation:

Tagil’cev S.N., Cherednichenko A.V., Melnik V.V. Aggregation methods hydrogeomechanical, electrical and dowsing to select areas of hydrogeological wells. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):224-234. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-224-234.

Acknowledgements:
Issue number: 3
Year: 2020
Page number: 224-234
ISBN: 0236-1493
UDK: 622.83+556.343
DOI: 10.25018/0236-1493-2020-31-0-224-234
Article receipt date: 21.11.2019
Date of review receipt: 21.01.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

Tagil’cev S.N.1, Dr. Sci. (Eng.), Professor, head of the Department of hydrogeology, engineering Geology and Geoecology, tagiltsev@k66.ru,
Cherednichenko A.V.1, hydrogeological engineer, Department of hydrogeology, engineering Geology and Geoecology,
Melnik V.V.2, Cand. Sci. (Eng.), head of geomechanics Department, melnik@igduran.ru,
1 Ural state mining University, 620144, Yekaterinburg, Russia,
2 The Institute of Mining of the Ural branch of the Russian Academy of Sciences, 620075, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Bird C. Planetary Grid. New Age Journal. 5. 1975. P.p. 36—41.

2. Voskresenskij Yu.N. Polevaya geofizika [Field geophysics]: uchebnik dlya vuzov. RGU Nefti i Gaza M., Nedra, 2010 479 p. [In Russ]

3. Zoback M.L. Firstand second-order patterns of stress in the lithosphere: the world stress map project. Journal of Geophysical Research. 1992. Vol. 97. no B8. pp. 11761–11782.

4. Karavas A.K. The Practice of dowsing in Geology. Byulleten’ MOIP. Otdel geologicheskij. T. 89, no 6, 2014. pp. 77—82. [In Russ]

5. Libster G.A., CHirva A.I. Use of dowsing when mining in Krivbass. Metallurgicheskaya i gornorudnaya promyshlennost’. 1991. no 4. pp. 55—57. [In Russ]

6. Lushnikova O.Yu. Prakticheskaya biolokaciya pri issledovanii nedr [Practical dowsing in the study of mineral resources]. Ekaterinburg: UGGU, 2003. 104 p. [In Russ]

7. Lushnikova O.Yu., Lushnikov L.L. Use of dowsing in mining. Izv. VUZov. Gornyj zhurnal. 1995. no 5. pp. 121—125. [In Russ]

8. Tagil’cev S.N., Luk’yanov A.E. Geomekhanicheskaya rol’ tektonicheskih razlomov i zakonomernosti ih prostranstvennogo raspolozheniya [Geomechanical role of tectonic fractures and the regularities of their spatial arrangement]. Geomekhanika v gornom dele: dokl. nauch.-tekhn. konf. (12–14 oktyabrya 2011 g.). Ekaterinburg, 2012. pp. 26–39. [In Russ]

9. Tkachuk E.I. Regular vertical changeability of rock mass properties of filtration. Proceeding Sixth Int. Congress IEAG. 1990. Vol. 2. pp. 1249–1252.

10. Tromp S.W. Possible physiological Causes of Dowsing. Jnt. J. Parapsyclol. 1968. Vol. 10. no 4. pp. 363—391.

11. Stefanov Y., Bakeev R.A., Rebetsky Yu., Kontorovich V.A. Structure and formation stages of a fault zone in a geomedium layer in strike-slip displacement of the basement. Physical Mesomechanics. 2014. Vol. 17. pp. 204—215. DOI: 10.1134/S1029959914030059.

12. Tataurova A.A., Stefanov Y.P., Bakeev R.A. Influence of gravity on deformation of blocks in Earthes crust. AIP Conference Proceedings. Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2017 (AMHS›17) (Tomsk, Russia, 9—13 October 2017). 2017. Vol. 1909. no 1. pp. 020217—1-020217—4.

13. Stefanov Yu. P., Bakeev R.A., Rebetsky Yu. L., Kontorovich V.A. Structure and formation stages of a fault zone in a geomedium layer in stick-slip displacement of the base. Physical Mesomechanics. 2013. Vol. 16. no 5. pp. 41—52.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.