Method of continuous programmed diagnostics of equipment

Authors: Zatonskiy A. V.

It is important to diagnose mining and processing equipment to optimize effectiveness and image of businesses and industries. Existing software tools of vibration diagnostics feature some disadvantages, including computational complexity and multiplicity of settings. Moreover, troubleshooting of equipment conventionally uses only special diagnostic information, while the data on the process-dependent parameters are also applicable. This article proposes a simple and efficient method of programmed determination of state changes in equipment. The method is tested using specially generated sequences of noisy signals reflective of transient processes in standard process equipment. The trends of the signals were processed using different nature filters. The filtered sequence of the signals over an assigned period of time was converted to a histogram of value ranges of the signals. The difference of the histograms was calculated as the rate of difference between the vectors formed by the values of pockets in the histograms. Special condition of equipment is identified by the sum of differences of the histograms within a sliding window. It is shown that with the appropriate filtration algorithm and rate of difference of histograms at the moment of special condition, the value of the diagnostic signal increases by a few times as compared with the normal condition of equipment. This computationally simple algorithm allows using data of any nature for continuous diagnostics of equipment.

Keywords: mining equipment, diagnostics, identification, special conditions, algorithm, software.
For citation:

Zatonskiy A. V. Method of continuous programmed diagnostics of equipment. MIAB. Mining Inf. Anal. Bull. 2020;(4):146-154. [In Russ]. DOI: 10.25018/0236-1493-20204-0-146-154.

Acknowledgements:
Issue number: 4
Year: 2020
Page number: 146-154
ISBN: 0236-1493
UDK: 622.6+004.92
DOI: 10.25018/0236-1493-2020-4-0-146-154
Article receipt date: 19.02.2020
Date of review receipt: 16.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

A.V. Zatonskiy, Dr. Sci. (Eng.), Professor, Perm National Research Polytechnic University, Berezniki branch, 618404, Berezniki, Russia, e-mail: zxenon@narod.ru.

For contacts:
Bibliography:

1. Tikhomirov M. V., Konopkin E. V., Safonov V. I. Analysis of some parameters and events of the state of technical operation of mining equipment in difficult mining conditions. Problemy sovremennoy nauki i obrazovaniya. 2019, no 1, pp. 23—27. [In Russ].

2. Karandaev A. S., Yachikov I. M., Khramshin V. R. Methods of multi-parameter diagnostics of electric equipment condition within on-line monitoring systems. Procedia Engineering. 2016. Vol. 15. Pp. 32—38.

3. D'yachenko M. D., Kodulev S. V. Hardware-software complex for monitoring the operation of oil pumps of power high-voltage transformers. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, no 34, pp. 127—133. [In Russ].

4. Xue S., Howard I., Wang C., Bao H., Yan Y. The diagnostic analysis of the planet bearing faults using the torsional vibration signal. Mechanical Systems and Signal Processing. 2019. Vol. 134. 106304. DOI: 10.1016/j.ymssp.2019.106304.

5. Schmidt S., Heyns P. S., Gryllias K. C. A discrepancy analysis methodology for rolling element bearing diagnostics under variable speed conditions. Mechanical Systems and Signal Processing. 2019. Vol. 116. Pp. 40—61.

6. Rakaeva T. G., Plekhov P. V., Zatonskiy A. V. Improving the efficiency of a limestone quarry management system by using a simulation model. Gornyi Zhurnal. 2019, no 12, pp. 39—43. [In Russ].

7. Zatonskiy A. V. Dynamic spatial model of a multi-drive belt conveyor. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika. 2017, no 4, pp. 99—110. [In Russ].

8. Plekhov P. V., Zatonskiy A. V., Bekker V. F. Control of means of production in the quality management system of chemical products. Gornyy informatsionno-analiticheskiy byulleten’. 2010, no 9, pp. 66—72. [In Russ].

9. Bityukov S. I., Maksimushkina A. V., Smirnova V. V. Comparison of histograms in physical researches. Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika. 2016, no 1, pp. 81—90. [In Russ].

10. Nikitin A.A., Petrov A. V. Teoreticheskie osnovy obrabotki geofizicheskoy informatsii [The theoretical basis of the geophysical information processing], Moscow, RGGU, 2008, 112 p.

11. Bekker V. F. Reshenie tekhnologicheskikh problem deystvuyushchego proizvodstva sredstvami avtomatizatsii [The solution of technological problems of existing production by automation], Perm, PNIPU, 2012, 312 p.

12. Zhang Y., Wang G., Xu J., Shi Z., Feng T., Dong D., Chi G. A method of eliminating the signal-dependent random noise from the raw CMOS image sensor data based on Kalman filter. Signal Processing. 2014. Vol. 104. Pp. 401—406.

13. Sun X.-J., Deng Z.-L. Optimal and self-tuning weighted measurement fusion Wiener filter for the multisensor multichannel ARMA signals. Signal Processing. 2009. Vol. 89. Pp. 738—752.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.