Methodological bases of complex geomechanical studies for selecting optimal parameters of drainage of waterlogged areas fields

This article provides examples of an integrated approach to the study of the geomechanical features of mineral deposits responsible for the filtration properties of a massif and, as a result, increased water cut of the field as a whole. Having knowledge of a number of characteristics that affect the water conductivity of the massif, it seems possible to select the parameters of the drainage system of the field in such a way as to minimize the cost of creating an intake due to the point arrangement of water-reducing wells. Structural-tectonic disturbances with geodynamic mobility, due to which aquifers and caverns in karst rocks remain open and are not filled with clay and sand materials, are the main search features of aquifers. The boundaries of the zones of structural-tectonic disturbances and their spread are well detected by ground-based geophysical methods, such as electrical exploration (boundaries of disturbances) and spectral seismic profiling (depth of propagation of zones of increased fracturing). It is proposed to use satellite geodesy as the most effective way to determine coordinates at large bases as geodetic methods for studying modern geodynamic activity. The examples of dewatering the fields using the proposed approach have shown their high efficiency at minimal cost for the creation of water intake facilities. This technique allows you to get the greatest effect under the conditions of aquifers confined to the rocky mountain range, especially in conditions of karst propagation.

Keywords: aquiferous horizon, water inflows, well, open-cast mining, deformations of berm, improve sustainability, wellpoint, mine, water depression.
For citation:

Melnik V.V., Harisov T.F., Zamyatin A.L. Methodological bases of complex geomechanical studies for selecting optimal parameters of drainage of waterlogged areas fields. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):127-137. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-127-137.

Acknowledgements:
Issue number: 3
Year: 2020
Page number: 127-137
ISBN: 0236-1493
UDK: 622.83; 551.21.3
DOI: 10.25018/0236-1493-2020-31-0-127-137
Article receipt date: 21.11.2019
Date of review receipt: 07.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

Melnik V.V.1, Cand. Sci. (Eng.), head of the Department of geomechanics, melnik@igduran.ru,
Harisov T.F.1, Cand. Sci. (Eng.), senior researcher at the laboratory of geomechanics of underground structures, associate Professor of the Department of mine construction,
Zamyatin A.L.1, researcher at the laboratory of technology for disaster risk reduction in subsurface use,
1 The Institute of Mining of the Ural branch of the Russian Academy of Sciences, 620075, Ekaterinburg, Russia.

 

For contacts:
Bibliography:

1. Silwamba C, Chileshe P R K. Open Pit Water Control Safety: A Case Of Nchanga OpenPit Mine. Zambia. International journal of Scientific & Technology research, 2015, Vol. 4, no 8, pp. 101 107.

2. Preene M. Techniques and Developments in Quarry and Surface Mine Dewatering. Proceedings of the 18-th Extractive Industry Geology Conference 2014 and technical meeting 2015, pp. 194 206.

3. Melnik V.V., Zamjatin A.L. Osushenie rudnyh tel v uslovijah povyshennoj obvodnennosti i zakarstovannosti nalegajushhej tolshhi. Problemy nedropol’zovanija 2018. no1 (16). pp. 105 111. DOI: 10.25635/2313—1586.2018.01.105. [In Russ].

4. Sashurin A.D., Balek A.E., Panzhin A.A., Usanov S.V. Innovative technology for diagnostics of geodynamic activity of the geological environment and safety assessment of subsurface use objects. Gornyj zhurnal. 2017. no 12. pp. 16—20 DOI: 10.17580/ gzh.2017.12.03. [In Russ].

5. Panzhin A.A., Sashurin A.D., Panzhina N.A. Determination of the stress-strain state of the massif in the area of the Kiyembaevsky quarry. Markshejderija i nedropol’zovanie. 2019. no 1. pp. 37–40. DOI: 10.25635/IM.2019.30.37814. [In Russ].

6. Panzhin A.A., Panzhina N.A. Issledovanie ishodnogo i sovremennogo naprjazhennodeformirovannogo sostojanija Dzhetygarinskogo mestorozhdenija hrizotil-asbesta. Innovacionnye geotehnologii pri razrabotke rudnyh i nerudnyh mestorozhdenij [Investigation of the initial and modern stress-strain state of the Dzhetygarinsky Deposit of chrysotile asbestos]: sbornik dokladov VIII Mezhdunarodnoj nauchno-tehnicheskoj konf. (4 5 aprelja 2019): / otv. red. N.G. Valiev. Ekaterinburg: UGGU. 2019. pp. 196–201. [In Russ].

7. Zanutta A., Negusini M., Vittuari L., Cianfarra P., Salvini F. et al. Monitoring geodynamic activity in the Victoria Land, East Antarctica: Evidence from GNSS measurements. Journal of Geodynamics. 2017. Vol. 110. pp. 31–42.

8. Sagintayev Z., Yerikuly Z., Zhaparkhanov S., Panichkin, V., Miroshnichenko O., Mashtayeva S. Groundwater inflow modeling for a Kazakhstan copper ore deposit. Journal of Environmental Hydrology, 2015, Vol. 23, 9 p.

9. Melnik V.V. Application of the spectral seismic profiling method for evaluating the geomechanical state of the rock mass around mine workings. MIAB. Mining Inf. Anal. Bull. 2005. no 10. pp. 69–74. [In Russ].

10. Melnik V.V., Zamjatin A.L. Research and creation of a geological-structural and geomechanical model of a subsurface use site. MIAB. Mining Inf. Anal. Bull. 2005. no 4. pp. 226—230. [In Russ].

11. Santarato G., Ranieri G., Occhi M., Morelli G., Fischanger F., Gualerzi D. Threedimensional Electrical Resistivity Tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils. Engineering Geology, 2011, Vol. 119, pp. 18–30.

12. Elsayed I.S., Alhussein A.B., Gad E., Mahfooz A.H. Shallow Seismic Refraction, Two-Dimensional Electrical Resistivity Imaging, and Ground Penetrating Radar for Imaging the Ancient Monuments at the Western Shore of Old Luxor City, Egypt. Archaeological Discovery, 2014, Vol. 2, no 2, pp. 31—43.

13. Conyers L.B. Ground-penetrating Radar for Geoarchaeology. Analytical Methods in Earth and Environmental Science N.Y.: Wiley, 2016, 160 p.

14. Glikman A.G., “Physics and Practice of Spectral Seismic Exploration,” available at: http://www.newgeophys.spb.ru, 2018.

15. Zheltysheva O.D. Usanov S.V., Draskov V.P. Measures of protection of buildings and structures from underground mining operations in the karst massif. Problemy nedropol’zovanija. 2016. no2(9). pp. 71—76. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.