Prediction procedure for sinkholes in terms of the Upper Kama potassium–magnesium salt deposit

Authors: Татаркин А. В. 

Underground mineral mining under conditions of the industrial (or urban) development often induces hazards which can result in deformation of ground surface and in alteration of near surface geological and geotechnical conditions during operation of buildings. This article discusses a methodological framework for assessment of geological and geotechnical conditions, and the prediction procedure of sinkholes during underground mining of potassium–magnesium salts. The research methods include electrical profiling, vertical electric sounding and high-precision monitoring of electrical resistance. The research results are based on the constructed geo-model, its in-situ testing and the revealed objective laws. From the objective laws, the criteria are determined for zoning based on risk of change in the geotechnical conditions and sinkhole hazard. These criteria are waterproof strata quality calculated from digital models, change in the specific electrical resistance from high-precision monitoring and the ground surface subsidence velocity from plane surveying. As a result of the implemented research, the sinkhole prediction procedure has proved its applicability in the tests on forecasting sinkholes at production objects within the Upper Kama potassium–magnesium deposit.

Keywords: Salt deposits, hazardous processes, geological and geotechnical conditions, resistivity prospecting, procedure, prediction, risks, undermined areas, safety.
For citation:

Tatarkin A. V. Prediction procedure for sinkholes in terms of the Upper Kama potassium–magnesium salt deposit. MIAB. Mining Inf. Anal. Bull. 2020;(1):121-132. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-121-132.

Acknowledgements:
Issue number: 1
Year: 2020
Page number: 121-132
ISBN: 0236-1493
UDK: 550.837
DOI: 10.25018/0236-1493-2020-1-0-121-132
Article receipt date: 01.10.2019
Date of review receipt: 14.11.2019
Date of the editorial board′s decision on the article′s publishing: 20.12.2019
About authors:

A. V. Tatarkin, Cand. Sci. (Eng.), Head of Department of Geophysical Research,
LLC NIPPPD Nedra, 614064, Perm, Russia, e-mail vsto08@mail.ru.

For contacts:

A. V. Tatarkin, e-mail vsto08@mail.ru

Bibliography:

1. Laptev B. V. Emergency situations at the Verkhnekamskoye Deposit Potash Mines. Bezopasnost' truda v promyshlennosti. 2009, no 8, pp. 28—31. [In Russ].
2. Gołębiowski T., Jarosińska E. Application of GPR and ERT methods for recognizing of gypsum deposits in urban areas. Acta Geophysica. 2019, Vol. 67, Issue 6, pp. 2015 —2030. DOI:10.1007/s11600-019-00370-7.
3. Laptev B. V. Historiography of accidents when developing salt deposits. Bezopasnost' truda v promyshlennosti. 2011, no 12, pp. 41—46. [In Russ].
4. Glebov S. V. Obosnovanie ratsional'nykh kompleksov geofizicheskikh issledovaniy vodozashchitnoy tolshchi na mestorozhdeniyakh vodorastvorimykh rud [Substantiation of rational geophysical research complexes of the water-protective column at water-soluble ore deposits], Candidate’s thesis, Perm, 2006, 156 p.
5. Tatarkin A. V., Kolesnikov V. P. Express methods of electrometry in identifying and monitoring the status of zones of disturbance of the water-protection strata in a salt deposit. Gornyy informatsionno-analiticheskiy byulleten’. 2008, no 5, pp. 164—172. [In Russ].
6. Zhukov A. A., Prigara A. M., Tsarev R. I., Shustkina I. Yu. Method of mine seismic survey for studying geological structure features of Verkhnekamskoye salt deposit. MIAB. Mining Inf. Anal. Bull. 2019;4:121-136. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-121-136.
7. Tsarev R. I., Prigara A. M., Zhukov A. A. Possibilities of seismic survey on shear waves. Materialy 15-y konferentsii i vystavki EAGE «Inzhenernaya i rudnaya geofizika 2019». 22—26 aprelya 2019 g. [Engineering and Mining Geophysics 2019. 15th Conference and Exhibition: proceedings. 22—26 April 2019. Gelendzhik, Russia], Gelendzhik, 2019. [In Russ].
8. Kolesnikov V. P., Laskina T. A. Results of studies on the application of electrometrics techniques in urbanized areas. Geologiya i poleznye iskopaemye Zapadnogo Urala. 2018, no 18, pp. 179—182. [In Russ].
9. Tatarkin A. V., Filimonchikov A. A. Risk assessment of changes in geotechnical conditions in developed territories. Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 4, pp. 123—128. [In Russ].
10. Guerriero M., Capozzoli L., Martino G., Giampaolo V., Rizzo E., Canora F., Sdao F. Geophysical techniques for monitoring carbonate karstic rocks. Italian Journal of Engineering Geology and Environment. 2019. October. DOI: 10.4408/IJEGE.2019-01.S-10.
11. Kidanu S. T., Torgashov E. V., Varnavina A. V., Anderson N. L. EERT-based Investigation of a Sinkhole in Greene County, Missouri. AIMS Geosciences. 2016. Vol. 2(2), pp. 99—11.
12. Supper R., Chambers J., Tsourlos P., Kim J. H. Foreward. Near Surface Geophysics. 2014. No 12. Pp. 1—3. DOI: 10.3997/1873-0604.2013068.
13. Vagin V. B., Efimov A. M., Kulagov E. V. Research and assessment of state of water proof formation over potash horizons with geophysical methods. Gornyy zhurnal. 2014, no 2, pp. 11—15. [In Russ].
14. Reynolds J. M. An introduction to applied and environmental geophysics. Ed. 2. 2011. John Wiley & Sons, Hoboken.
15. Kolesnikov V. P., Tatarkin A. V., Malinovskiy K. K. In search of electromagnetic precursors of earthquakes. Gornoe ekho. 2005, no 4 (22), pp. 12—18. [In Russ].
16. Kudryashov A. I. Verkhnekamskoe mestorozhdenie soley. 2-e izd. [Verkhnekamskoye salt deposit. 2nd edition], Moscow, Epsilon Plyus, 2013, 368 p.
17. Kudryashov A. I. Razryvnaya tektonika Verkhnekamskogo mestorozhdeniya soley [Explosive tectonics of Verkhnekamskoye salt deposit], Perm', GI UrO RAN, 2004, 194 p.

Subscribe for our dispatch