Shaft lining design with regard to sinking technology

The study considers the algorithm of problem of rock mechanics in underground construction, connected with determination of stresses in shaft lining in case of using the sinking with lining technology. Software system MIDAS GTS NX enables stage-wise computation with regard to history of shaft construction. First, the initial calculation stage includes all elements of rock mass and eliminates all elements of lining. Vertical strains are set zero in the model. Rigid fixation of faces, gravity load and tectonic stresses are included. This is the model of initial condition of rock mass, i.e. the condition before shaft sinking. Then, modeling simulates stage-wise sinking by shaft bottom cuts of 4.0 m and includes all elements of temporary reinforcement and permanent lining in operation. Rock bolts are included at the second step, shotcrete—at a lag of 2 cuts, and permanent lining—at a lag of 7 cuts from the shaft foot. In total, there are 22 calculation steps ended with model of a sunk and supported interval in the shaft. Validity of the results is checked by comparison of the modeling, analytical and field monitoring data. The model stresses agree well with the analytical and experimental data for advanced shotcrete lining and with analytical data for main reinforced concrete support. The final conclusions should be drawn based on the data of shaft monitoring for 3–5 year after completion of construction.

Keywords: shaft, lining, shaft sinking technology, safety, finite element method, elastic theory, monitoring.
For citation:

Silchenko Yu. A., Pleshko M. S. Shaft lining design with regard to sinking technology. MIAB. Mining Inf. Anal. Bull. 2020;(11):96-107. [In Russ]. DOI: 10.25018/0236-14932020-11-0-96-107.

Acknowledgements:
Issue number: 11
Year: 2020
Page number: 96-107
ISBN: 0236-1493
UDK: 624.195
DOI: 10.25018/0236-1493-2020-11-0-96-107
Article receipt date: 03.04.2020
Date of review receipt: 12.05.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

Yu.A. Silchenko1, Cand. Sci. (Eng.), Deputy Head of Department of Industrial, Nuclear and Radiation Safety Expertise, Federal Autonomous Institution «Glavgosexpertiza of Russia», 119049, Moscow, Russia,
M.S. Pleshko, Dr. Sci. (Eng.), Assistant Professor, Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: mixail-stepan@mail.ru.

 

For contacts:

M.S. Pleshko, e-mail: mixail-stepan@mail.ru.

Bibliography:

1. Baklashov I. V. Geomekhanika: Uchebnik dlya vuzov. V 2 t. T. 1. [Geomechanics: University textbook. In 2 vols. Vol. 1. ], Moscow, Izd-vo MGGU, 2004, 208 p.

2. Bulychev N. S. Mekhanika podzemnykh sooruzheniy v primerakh i zadachakh [Mechanics of underground structures in problems and examples], Moscow, Nedra, 1989, 272 p.

3. Erdoğan Güler A methodology for lining design of circular mine shafts in different rock masses. 2013. 72 p. available at: http://etd.lib.metu.edu.tr/upload/12615662/index.pdf.

4. Kazikaev D. M., Sergeev S. V. Diagnostika i monitoring napryazhennogo sostoyaniya krepi vertikal'nykh stvolov [Stress diagnostics and monitoring in vertical shaft lining], Moscow, Izd-vo «Gornaya kniga», 2011, 244 p.

5. Savin I. I., Sviridkin V. A., Lukashin S. B. Methods of processing measurement data on different-type stresses and strains in mine support. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2012, no 1, pp. 171—177. [In Russ].

6. Sammal' A. S., Sergeev S. V., Antsiferov S. V., Deev P. V. Determination of application domain for concrete lining of shafts in fault zones. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 4, pp. 317—326. [In Russ].

7. Antsiferov S. V., Sammal' A. S., Deev P. V. Stress–strain analysis of multi-layer lining of vertical shafts with regard to design deviations of cross-section forms. Fundamental'nye i prikladnye voprosy gornykh nauk. 2017. Vol. 4, no 2, pp. 19—25. [In Russ].

8. Kharisov T. F., Antonov V. A. Lining stability during vertical shaft construction. Problemy nedropol'zovaniya. 2014, no 1 (1), pp. 65—69. [In Russ].

9. Kharisov T. F. Damage prevention in shaft lining in the sinking with lining technology of shaft construction. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 4, pp. 264—274. [In Russ].

10. Sergeev S. V., Vorob'ev E. D., Frolov N. V. Inspection of mine shaft in operation in complicated engineering geologic conditions. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2017, no 2, pp. 63—67. [In Russ].

11. Sergeev S. V., Vorob'ev E. D. Information and measurement system of stress–strain monitoring in load-bearing structures and elements. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki. 2017, no 25 (274), pp. 116—122. [In Russ].

12. Maslennikov S. A. Lining design for vertical shafts in difficult geological conditions. MIAB. Mining Inf. Anal. Bull. 2016, no 6, pp. 50—55. [In Russ].

13. Sentyabov S. V. Stress–strain monitoring of concrete lining of shafts in the Gay field. Problemy nedropol'zovaniya. 2017, no 2(13), pp. 119—126. [In Russ].

14. Sentyabov S. V. Analysis and prediction of change in stress state of shaft lining in Gaisky Mine. MIAB. Mining Inf. Anal. Bull. 2018, no 10, pp. 79—85. [In Russ]. DOI: 10.25018/02361493-2018-10-0-79-85.

15. Nasonov A. A. Effective geotechnology sinking ultra-deep vertical shafts. MIAB. Mining Inf. Anal. Bull. 2018, no 1, pp. 26—33. [In Russ]. DOI: 10.25018/0236-1493-2018-1-0-26-33.

16. Prokopov A. Yu., Prokopova M. V., Tkacheva K. E. Justification of block support for sumps of shafts under deeper sinking. Nauchnoe obozrenie. 2014, no 11—3, pp. 768—772. [In Russ].

17. Igolka D. A. 3D finite element modeling capabilities in mine shaft design. Gornaya mekhanika i mashinostroenie. 2012, no 1, pp. 40—46. [In Russ].

18. Kologrivko A. A., Igolka D. A., Luksha E. M. Analysis of shaft lining materials. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F: Stroitel'stvo. Prikladnye nauki. 2016, no 8, pp. 38—42. [In Russ].

19. Walton G., Kim E., Sinha S., Sturgis G., Berberick D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 105. Pp. 160—171. DOI: 10.1016/j.ijrmms.2018.03.017.

20. Zhou Y.-C., Liu J.-H., Huang S., Yang H.-T., Ji H.-G. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Construction and Building Materials. 2020. Vol. 230. Article 116909. DOI: 10.1016/j.conbuildmat.2019.116909.

21. Jendryś M. Analysis of stress state in mine shaft lining, taking into account superficial defects. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 261. Article 012016. DOI: 10.1088/1755-1315/261/1/012016.

22. Xiaoming Sun, Gan Li, Chengwei Zhao, Yangyang Liu, Chengyu Miao Investigation of deep mine shaft stability in alternating hard and soft rock strata using three-dimensional numerical modeling. Processes. 2018. Vol. 7. No 1. DOI: 10.3390/pr7010002.

23. Qing Yu, Kexin Yin, Jinrong Ma, Hideki Shimada Vertical shaft support improvement studies by strata grouting at aquifer zone. Advances in Civil Engineering. 2018. Vol. 7, Article 5365987. DOI: 10.1155/2018/5365987.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.