Safe operation of transportation tunnels based on predictive modeling of active geomechanical processes

Assessment of serviceability status of long-term operating tunnels requires the qualitative and quantitative analysis of effect exerted by different defects on load-bearing margin of tunnel lining. Major defects of lining are cracks, falls, weakening areas, internal voids, etc. The studies involved the generalized data on 22 railway tunnels in the south of Russia. On this base, the numerical models of tunnels with damaged lining are constructed. The modeling has found out that part-through internal voids and surface falls initiate local zones of stress concentration in lining. Deep defects that extend along the tunnel axis by 0.25 span and longer feature the highest hazard. The stress envelope in the lining is asymmetrical in this case, and the values of maximal stresses are higher by 15–50% than in the standard-quality lining. The highest danger is constituted by concrete of reduced actual strength in the zone of a defect. These conditions promote further growth of imperfections and nonserviceability of lining due to formation of fracture zones and development of excessive deformation. Assessment of serviceability of tunnel lining requires analyzing joint impact of different defects.

Keywords: tunnel, lining, defect, stresses, strains, load-bearing capacity.
For citation:

Meskhi B. Ch., Pleshko M. S., Voinov I. V., Caixao J. J. Z. Safe operation of transportation tunnels based on predictive modeling of active geomechanical processes. MIAB. Mining Inf. Anal. Bull. 2020;(8):86-96. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-86-96.

Issue number: 8
Year: 2020
Page number: 86-96
ISBN: 0236-1493
UDK: 624.195
DOI: 10.25018/0236-1493-2020-8-0-86-96
Article receipt date: 19.04.2019
Date of review receipt: 06.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.07.2020
About authors:

B.Ch. Meskhi1, Dr. Sci. (Eng.), Professor, Rector, e-mail:,
M.S. Pleshko1,2, Dr. Sci. (Eng.), Assistant Professor; Professor, e-mail:,
I.V. Voinov, Graduate Student, e-mail:, Rostov State Transport University, 344038, Rostov-on-Don, Russia,
Johan Jacinto Zeca Caixao2, Graduate Student, e-mail:,
1 Don State Technical University, 344023, Rostov-on-Don, Russia.
2 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:

M.S. Pleshko, e-mail:


1. Tonneli i metropoliteny. Pravila obsledovaniya i ustraneniya defektov i povrezhdeniy pri ekspluatatsii GOST R 57208-2016 [Neise, Tunnels and subways. Rules for inspection and elimination of defects and damages during operation, State Standart R 57208—2016], Moscow, 2016.

2. Zdaniya i sooruzheniya. Pravila obsledovaniya i monitoringa tekhnicheskogo sostoyaniya GOST 31937-2011 [ [Neise, Buildings and structures. Rules of inspection and monitoring of technical conditions, State Standart 31937-2011], Moscow, 2011.

3. Rukovodstvo po tekhnicheskomu diagnostirovaniyu avtodorozhnykh tonneley [Guidance on the technical diagnosis of road tunnels], Moscow, 2001.

4. Pleshko M., Voinov I., Revyakin A. Assessment of the impact of railway tunnel lining defects with a long working lifespan on its carrying capacity. MATEC Web of Conferences. 2017. Vol. 106. Article 05004. DOI: 10.1051/matecconf/201710605004.

5. Pleshko M. S., Pleshko M. V., Voynov I. V. Estimation of technical state of long-term service railway tunnels. MIAB. Mining Inf. Anal. Bull. 2018, no 1, pp. 34–40. [In Russ]. DOI: 10.25018/0236-1493-2018-1-0-34-40.

6. Bezrodnyy K. P., Lebedev M. O., Sammal' A. S. Modern experience in the application of theoretical approaches of geomechanics in underground construction, based on the methods of continuum mechanics. Metro i tonneli. 2018, no 4, pp. 20—21. [In Russ].

7. Deev P. V., Sammal' A. S., Antsiferov S. V., Shelepov N. V. The influence of the technological gap on the stress state of the tunnel lining. Izvestiya Tul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2018, no 4, pp. 287—293. [In Russ].

8. Pankratenko A. N., Sammal' A. S., Antsiferov S. V., Deev P. V. Consideration of the technological features of the shield method of penetration in calculating of the tunnel lining. MIAB. Mining Inf. Anal. Bull. 2017, no S1, pp. 212—224. [In Russ].

9. Bezrodnyy K. P., Lebedev M. O. Mining and environmental monitoring during the construction and operation of the North Caucasus transport tunnels. Naukovedenie. Internet-zhurnal. 2014, no 5 (24), pp. 21. [In Russ].

10. Bezrodnyy K. P., Lebedev M. O. Field studies of the stress-strain state of the systems «lining-array» as part of the mining-environmental monitoring. Metro i tonneli. 2011, no 6, pp. 28—30. [In Russ].

11. Bulychev N. S. Mekhanika podzemnykh sooruzheniy v primerakh i zadachakh [Mechanics of underground structures in the examples and tasks], Moscow, Nedra, 1989, 272 p.

12. Mohammed J., Hrubesova E. Numerical modelling for twin horizontal circle tunnels under static and dynamic loads. Lecture Notes in Civil Engineering. 2019. Vol. 9, pp. 111—124.

13. Tiwari R., Chakraborty T., Matsagar V. Analysis of curved tunnels in soil subjected to internal blast loading. Acta Geotechnica. 2018. Vol. 15. Pp. 509—528.

14. Torres A. C., Padilla E. A. Physical and numerical experimental study of stress-strain state of the structure lining of a shallow tunnel. Geotechnical Aspects of Underground Construction in Soft Ground. Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. 2014, pp. 191—195.

15. Xu G., He C., Lu D., Wang S. The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata. Thin-Walled Structures. 2019. Vol. 144. Article 106282.

16. Khazhyylay Ch. V., Eremenko V.A., Kosyreva M.A., Yanbekov A. M. In-situ rock mass failure envelope plotting using the Hoek–Brown criterion and RocData software toolkit. MIAB. Mining Inf. Anal. Bull. 2018, no 12, pp. 92–101. [In Russ]. DOI: 10.25018/0236-1493-2018-120-92-101.

17. Korsun V. I., Nedorezov A. V., Makarenko S. Yu. Comparative analysis of strength criteria for concrete. Sovremennoe promyshlennoe i grazhdanskoe stroitel'stvo. 2014. Vol. 10, no 1, pp. 65—78. [In Russ].

18. Zaretskiy K. Yu., Karabaev M. I. Estimated interaction of experimental piles with the base and comparison of test results. Vestnik MGSU. 2006, no 1, pp. 93—99. [In Russ].

19. Chen L., Liu Y., Yang P., Cen Z. Limit analysis of structures containing flaws based on a modified elastic compensation method. European Journal of Mechanics — A/Solids. 2008. Vol. 27. No 2. Pp. 195—209. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.