Safe operation of mining-and-transport system under impact of seismic shot waves

Authors: Vasilets V. V., Afanasev P. I., Pavlovich A. A.

In the Russian Federation, the surface mining method enjoys active and extensive development. However, there are difficulties which slow down production and lead to appreciation of operating costs. The increase in the mining rate and in the depth of open pit mines builds up the process transportation expenses and raises the current stripping ratio. One of the possible solutions is transition from rock haulage by trucks to conveying. The transition from the cyclic method to the cyclic-and-continuous technology allows high-production equipment, elevated availability factor and low operating costs. These systems are arranged on the spoil bank and require the seismic safety design. The concern of the pitwall stability with operating cyclic-and-continuous technology conveyor under the seismic shot impact is discussed. The basic normative and scientific procedures of drilling and blasting parameters to ensure safe seismic shots are analyzed, and the variant of the seismic shot impact estimate in different geological conditions is proposed. An alternative method to estimate allowable peak particle velocities in sedimentary rocks is substantiated. The practical guidance on safe blasting nearby a mine transportation system is presented.

Keywords: Seismic shot waves, seismic safety, cyclic-and-continuous technology, pitwall stability.
For citation:

Vasilets V. V., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. MIAB. Mining Inf. Anal. Bull. 2020;(1):26-35. [In Russ]. DOI: 10.25018/0236-1493-2020-1-0-26-35.

Issue number: 1
Year: 2020
Page number: 26-35
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236-1493-2020-1-0-26-35
Article receipt date: 11.09.2019
Date of review receipt: 18.11.2019
Date of the editorial board′s decision on the article′s publishing: 20.12.2019
About authors:

V.V. Vasilets, Director, JSC «SUEK-Kuzbass»,
652507, Leninsk-Kuznetsky, Russia,
P.I. Afanasev1, Cand. Sci. (Eng.), e-mail:,
A.A. Pavlovich1, Cand. Sci. (Eng.),
1 Saint-Petersburg Mining University, 199002, Saint-Petersburg, Russia.

For contacts:

P.I. Afanasev, e-mail:


1. DIN 4150-3:1999. Structural vibration. Part 3: Effects of vibration on structures, 1999.
2. BS 7385-1:1990. Evaluation and measurement for vibration in buildings. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings, 1993.
3. SS 460 48 66. Vibration and shock. Guidance levels for blasting-induced vibrations in buildings. 1999.
4. Djordjevic N., Brunton I., Cepuritis P., Chitombo G. P., Heslop G. Effect of blast vibration on slope stability. EXPLO 99: A Conference on Rock Breaking, 1999, pp. 1—21.
5. Zhang De, Li Gang Yan, Xu Yuan Impact analysis of blasting vibration on the slope and dump. Information Technology Journal, 2014, Vol. 13, pp. 730—737. DOI: 10.3923/itj.2014.730.737.
6. Shinoda М. Seismic stability and displacement analyses of earth slopes using noncircular slip surface. Soils and Foundations, 2015, Vol. 55(2), pp. 227—241. DOI: 10.1016/j.sandf.2015.02.001.
7. Singh P. K., Roy M. P. Damage to surface structures due to blast vibration. International Journal of Rock Mechanics and Mining Sciences, 2010, Vol. 47(6), pp. 949—961.
8. Zaklyuchenie o maksimal'nom urovne potentsial'nogo seysmicheskogo vozdeystviya massovykh vzryvov v kar'ere LGOKa na proektiruemyy kompleks tsiklichno-potochnoy tekhnologii [Conclusion on the maximum level of potential seismic impact of mass explosions in the quarry of LGOK on the designed complex of cyclic-stream technology], Moscow, IDG RAN, 2018, p. 6. [In Russ].
9. Novin'kov A. G., Protasov S. I., Samusev P. A., Gukin A. S. Statistical reliability of predicting the peak velocity of oscillations in a massive industrial explosion. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 5, pp. 50—57. [In Russ].
10. Segarra P., Sanchidrián J. A., Castedo R., López L. M., Del Castillo I. Performance of some coupling methods for blast vibration monitoring. Journal of Applied Geophysics, 2015, Vol. 112, pp. 129—135.
11. Sanchidrián J. A., Segarra P., López L. M. Energy components in rock blasting. International Journal of Rock Mechanics and Mining Sciences, 2007, Vol. 44(1), рр. 130—147.
12. Menzhulin M. G., Korshunov G. I., Afanas'ev P. I., Shchipachev A. S. Impact of blasting operations at the Zarechny open pit mine on the Taldinskaya-Zapadnaya-2 mine. Gornyy informatsionno- analiticheskiy byulleten’. 2015. Special edition 7, pp. 591—596. [In Russ].
13. Segarra P., Sanchidrián J. A., López L. M., Querol E., Gutiérrez J. Assessment of the error of blast vibration measurements. Rock fragmentation by blasting. Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting. 2009, Vol. 9, pp. 551—560.
14. Novin'kov A. G., Protasov S. I. Analysis of the prevailing oscillation frequencies during mass explosions in mining enterprises. Vzryvnoe delo. 2015, no 114/71, pp. 295—308. [In Russ].
15. Dong-Soo Kim, Jin-Sun Lee Propagation and attenuation characteristics of various ground vibrations. Soil dynamics and earthquake engineering. 2000, Vol. 19, pp. 115—126.
16. Tyupin V. N., Anisimov V. N. Methods of stability retention of exposed rock surfaces in fractured rock mass under large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2019;4:53-62. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-53–62.
17. Grib N. N., Tereshchenko M. V., Grib G. V., Pazynich A. Yu. The forecast of blast seismic effects on industrial infrastructure. Gornye nauki i tekhnologii. 2017, no 1, pp. 19—22. [In Russ].
18. Yugo N., Shin W. Analysis of blasting damage in adjacent mining excavations. Journal of Rock Mechanics and Geotechnical Engineering. 2015, Vol. 7(3), pp. 282—290.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.