Procedure justification for laboratory research of secondary stress field in creation and application of convergent technology for underground mining of rock salt

Authors: Galchenko Yu. P., Leizer V. I., Vysotin N. G., Yakusheva E. D.

For experimental validation of the formulated general approaches to creation of convergent mining technologies, a set of theoretical studies and virtual experiments is carried out using physical models and numerical simulations in Map3D. In mineral mining using convergent technologies, for example, when constructing honeycomb structures in rock mass, the stress state of the enclosing rock mass will change during stone drivage, preparatory works and actual stoping. For lab-scale research of rock salt, the plan and experimentation procedure were written with description of the methods of data acquisition (monitoring of samples). The laboratory research uses the prepared samples of rock salt, a hydraulic press to create rock pressure and a monitoring system with acoustic emission transducers and resistive-strain sensors to measure deformations. This equipment provides an overall picture and stress–strain analysis of a unit block. Using the theories of similarity and dimensionality, it is possible to judge on the influence exerted by the shape, arrangement and sizes of mined-out stopes on rock mass stability in the course of construction of honeycomb structures, as well as on the effect of induced stresses in the lithosphere on the geomechanical behavior of surrounding rock mass.


Keywords: Convergent mining technologies, rock salt, mined-out stopes, honeycomb structures, cylindrical stopes, stress state, acoustic emission transducers, crate data acquisition system, single foil constant strain gages, Map3D.
For citation:

Galchenko Yu. P., Leizer V. I., Vysotin N. G., Yakusheva E. D. Procedure justification for laboratory research of secondary stress field in creation and application of convergent technology for underground mining of rock salt. MIAB. Mining Inf. Anal. Bull. 2019;(11):35-47. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-35-47.


The study was supported by the Russian Science Foundation, Project No. 19-17-00034.

Issue number: 11
Year: 2019
Page number: 35-47
ISBN: 0236-1493
UDK: 622.831; 622.2; 622.23
DOI: 10.25018/0236-1493-2019-11-0-35-47
Article receipt date: 24.09.2019
Date of review receipt: 05.10.2019
Date of the editorial board′s decision on the article′s publishing: 10.10.2019
About authors:

Yu.P. Galchenko1, Dr. Sci. (Eng.), Professor, Expert,
V.I. Leizer1, Laboratory Technician,
N.G. Vysotin1, Assistant, e-mail:,
E.D. Yakusheva1, Engineer, e-mail:,
1 Mining Institute,
National University of Science and Technology «MISiS»,
119049, Moscow, Russia.

For contacts:

Yu.P. Galchenko, e-mail:


1. Koval'chuk M. V., Naraykin O. S. Nature-like technologies—New capacities and new risks. Indeks bezopasnosti. Indeks bezopasnosti, 2017, no 3—4 (118—119). Vol. 22, pp. 103—108. [In Russ].
2. Eremenko V. A., Gakhova L. N., Semenyakin E. N. Formation of higher stress zones and clusters of seismic events in deep mining in Tashtagol. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 2, pp. 80—87. [In Russ].
3. Eremenko V. A., Gakhova L. N., Esina E. N., Zinchenko D. N. Geomechanical support of deep-level ore mining. Gornyy zhurnal. 2014, no 5, pp. 74—78. [In Russ].
4. Eremenko V. A., Barnov N. G., Kondratenko A. S., Timonin V. V. Method for mining steeply dipping thin lodes. Gornyy zhurnal. 2016, no 12, pp. 45—50. [In Russ].
5. Lushnikov V. N., Sendi M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Determination procedure for damaged zone extent in rock mass around rooms and tunnels by numerical modeling. Gornyy zhurnal. 2013, no 12, pp. 11—16.
6. Zou L., Tarasov B. G., Dyskin A. V., Adchikary D. P., Pasternak E., Xu W. Physical modelling of stress-dependent permeability in fractured rocks. Rock Mechanics and Rock Engineering. 2013. Vol. 4. pp. 67—81.
7. Kong L., Ostadhassan M., Li C., Tamimi N. Rock physics and geomechanics of 3D printed Rocks. ARMA 51st U.S. Rock Mechanics. Geomechanics Symposium, San Francisco, California, USA, 2017, pp. 1—8.
8. Gell E. M., Walley S. M, Braithwaite C. H. Review of the Validity of the Use of Artificial Specimens for Characterizing the Mechanical Properties of Rocks. Rock Mechanics and rock Engineering, 2019, no. 3, pp. 1—13.
9. Trubetskoy K. N., Galchenko Yu. P., Burtsev L. I. Ekologicheskie problemy osvoeniya nedr pri ustoychivom razvitii prirody i obshchestva [Environmental concerns in subsoil management subject to sustainable development of the nature and society], Moscow, Nauchtekhlitizdat, 2003, 262 p.
10. Trubetskoy K. N., Galchenko Yu. P. Geoekologiya osvoeniya nedr i ekotekhnologii razrabotki mestorozhdeniy [Subsoil use geoecology and ecotechnologies of mineral mining], Moscow, Nauchtekhlitizdat, 2015, 360 p.
11. Trubetskoy K. N., Myaskov A. V., Galchenko Yu.P., Eremenko V. A. Creation and justification of convergent technologies for underground mining of thick solid mineral deposits. Gornyy zhurnal, 2019, no 5, pp. 6—13 [In Russ].
12. Voronkovich I. A. Structural features of proximal epiphysis of shin bone and efficient anchorage of fragments in depressed zone of comminuted fractures of the shin bone condyles (experimental research). Travmatologiya i ortopediya Rossii. 2013, no 3 (69), pp. 57—63. [In Russ].
13. Sakhno N. V. Method of determination of bone strength in animals with use of testing machine. Sel'skokhozyaystvennaya biologiya. 2008, no 6, pp. 122—126. [In Russ].
14. Akulich A. Yu., Denisov A. S., Akulich Yu. V. Preoperational strength test of spongy whirlbone in vivo. Permskiy meditsinskiy zhurnal. 2006. Vol. 23, no 5, pp. 6—12. [In Russ].
15. Sulgakov V. A. Engineering compressed three-layer structures of minimum weight with regard to design and technological constraints. Uchenye zapiski TsAGI. 1974. Vol. V, no 1, pp. 66—76. [In Russ].
16. Endogur A. I., Vaynberg M. V., Ierusalimskiy K. M. Sotovye konstruktsii. Vybor parametrov i proektirovanie [Honeycomb structures. Parameter selection and design], Moscow, Mashinostroenie, 1986, 200 p.
17. Kirpichev M. V. Teoriya podobiya [Theory of similitude], Moscow, AN SSSR, 1953, 96 p.
18. Pokrovskiy G. I., Fedorov I. S. Tsentrobezhnoe modelirovanie dlya resheniya inzhenernykh zadach [Centrifugal modeling for engineering problem solution], Moscow, 1953.
19. Zi-long Zhou, Jing Zhou, Long-jun Dong, Xin Cai, Yi-chao Rui, Chang-tao Ke. Experimental study on the location of an acoustic emission source considering refraction in different media. London N1 9XW, England. Nature Publishing Group, Macmillan Bulding. 2017. Vol. 7. No 7472.
20. Du K., Tao M., Li X. B., Zhou J. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance [J]. Rock Mechanics & Rock Engineering. 2016, pp. 1—17.
21. Cuadra J., Vanniamparambil P. A., Servansky D., Kontsos A., Bartoli I. Acoustic Emission Source modeling using a data driven approach. Academic Press. Journal of sound and vibration. 2015. Vol. 341, pp. 222—236.


Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.