Land use land cover change detection in the mining areas of V.D. Yalevsky coal mineRussia

The dynamics of land use/land cover (LULC) changes, the effect of coal mining on the LULC changes, and the regional environmental impact are discussed in this study. The different land use classes mainly Forest, Water Bodies, Road, Mining Area, Agriculture and Grass in the study area of V.D. Yalevsky coal field area in Kemerovo region of Russia are identified. On the other hand the impact of V.D. Yalevsky coal mine activities on LULC change on the environment and teritory are discussed. The LULC changes in the V.D. Yalevsky coal field area were analyzed for a period of 27 years e.g., from the year 1992 to 2019. The changes were detected on a 13-years time interval using Landsat-4 TM, Landsat-8 OLI. Furthermore supervised classification techniques using maximum likelihood method through ENVI (Environment for Visualizing Images) 5.1software was utilized. In addition post classification change detection method through ENVI was used to investigate the changes. The study reveals decrement in LULC categories of forest to 25.35km², water bodies to –0.94km², agriculture to –98.48km², road to -10.80km². However increment in the rate of mining area to 100.72km² and grass cover 34.86 km² during the study period. Meanwhile 90.18 % overall accuracy and (0.87) kappa coefficient for 1992 classified image, 93.41 % overall accuracy and (0.91)Kappa coefficient for 2006 classified image and 88.69 % overall accuracy and (0.85) kappa coefficient for 2019 classified image were obtained.

Keywords: Land use, Land cover, Change detection, V.D. Yalevsky coal mine area, Remote sensing.
For citation:

Al-Shateri H.A. Land use land cover change detection in the mining areas of V.D. Yalevsky coal mineRussia. MIAB. Mining Inf. Anal. Bull. 2020;(6-1):212-223. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-212-223.

Acknowledgements:
Issue number: 6
Year: 2020
Page number: 212-223
ISBN: 0236-1493
UDK: 622.83; 551.24
DOI: 10.25018/0236-1493-2020-61-0-212-223
Article receipt date: 11.03.2020
Date of review receipt: 06.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Al-shateri Hoshmand Ahmed Azeez, PhD Student, Department of Safety and Ecology of Mining, e-mail: hoshmendg@gmail.com, National university of science and technology «MISIS», Russia.

 

For contacts:
Bibliography:

1. Babkov-Esterkin V.I. i dr. Gornoe delo i okruzhayushchaya sreda [Mining and Environment]. Uchebnoe posobie dlya inzhenerov i magistrov. Moscow, 1999. Tom Chast’ 3. [In Russ]

2. Gendler S.G., Kovshov S.V. Estimation and reduction of mining-induced damage of the environment and work area air in mining and processing of mineral stuff for the building industry. Eurasian mining. 2016, no. 1. pp. 45—49. DOI 10.17580/em.2016.01.08.

3. Batugin A. Critically Stressed Areas of Earth’s Crust as Medium for Man-caused Hazards. E3S Web of Conferences, 56, 02007 (2018).Doi. 10.1051/e3sconf/20185602007.

4. Hendrychova M., Kabrna M. An analysis of 200 year long changes in a landscape affected by large scale surface coal mining: History, present and future. Applied Geography. 2016. Vol. 74. pp. 151—159. DOI: 10.1016/j.apgeog.2016.07.009.

5. Singh A. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing. 1989. Vol. 10 no. 6. P. 989—1003. DOI: 10.1080/01431168908903939.

6. Ruiz-Luna A., Berlanga-Robles C.A. Land use, land cover changes and coastal lagoon surface reduction associated with urban growth in no. rthwest Mexico. Landscape Ecol. 2013. Vol 18. no 2. pp. 159–171. DOI: 10.1023/A:1024461215456.

7. Lambin E.F., Geist H.J., Lepers E. Dynamics of landuse and land cover change in tropical regions. Annual Review of environment and recources. 2003. Vol. 28. pp. 205—241. DOI: 10.1146/ annurev.energy.28.050302.105459.

8. A.I. Kopytov, Yu.A. Manakov, A.N. Kupriyanov. Coal mining and issues of ecosystem preservation in Kuzbass. Ugol’. 2017. no. 3. pp. 72—77. DOI: http://dx.doi.org/10.18796/00415790-2017-3-72-77 [In Russ]

9. Malashkina V.A. Coal mine degasification efficiency enhancement to improve working conditions of miners. MIAB. Mining Inf. Anal. Bull. 2018 no. 7. pp. 69—75. DOI: 10.25018/02361493-2018-7-0-69-75 [In Russ]

10. Balovtsev S.V. Explosion safety procedure for working areas in coal mines. MIAB. Mining Inf. Anal. Bull. 2018. no. 11. pp. 218—226. DOI: 10.25018/0236-1493-2018-11-0-218-226. [In Russ]

11. Skopintseva O.V., Ganova S.D., Demin N.V., Papichev V.I. Comprehensive method of reducing dust and gas hazards in coal mines. Gornyj zhurnal. 2018. no. 11. pp. 97—100. DOI: 10. 17580/gzh.2018.11.18. [In Russ]

12. Kulikova E.Y., Ivannikov A.L. The terms of soils removal from the defects of the underground structures’ lining. In: IOP Conf. Series: Journal of Physics: Conf. Series 1425 (2020) 012062; doi:10.1088/1742—6596/1425/1/012062.

13. Slastunov, S.V., Kolikov, K.S., Ermak, G.P., & Yutyaev, E.P. (2015). Safety of coal mining in long-run development. Gornyi Zhurnal. 2015(4), 46—49. doi:10.17580/gzh.2015.04.08.

14. Batugin A., Myaskov A., Ignatov Yu., Khotchenkov Ev., Krasnoshtanov D. To the re-using of data on rockbursts for up to date research of the geodynamic safety problem. In: Proceedings of World Multidisciplinary Earth Sciences Symposium (WMESS-2018), Praga, on September 03—07, 2018. IOP Conference Series: Earth and Environmental Science, (2018). doi:10.1088/1755— 1315/221/1/012089.

15. Bocco, G., Mendoza, M., Velazquez, A. Remote sensing and GIS-based regional geomorphological mapping—a tool for land use planning in developing countries. Science direct, geomorphology-2009. Geomorphology. Vol. 39. no. 3—4. pp. 211–219. DOI: 10.1016/S0169— 555X(01)00027—7.

16. Turner B.L., Lambin E.F., Reenberg, A. The emergence of land change science for global environmental change and sustainability. Publmed.gov. 2007. Vol. 104. no. 52. pp. 1—7. DOI: 10.1073/pnas.0704119104.

17. Yuan F., Sawaya K.E., Loeffelhoz B.C., Bauer M.E. Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of environment. 2005. Vol. 98. pp. 317—328. DOI: 10.1016/j.rse.2005.08.006.

18. Story M., Congalton R.G. Accuracy assessment: A user’s perspective. Photogrammetric engineering and remote sensing. 1986. Vol. 52. no. 3. P. 397–399. DOI: 0099—1112/86/5203— 397$02.25/0.

19. Shivangi M., Priyanka Sh., Priyanka D. Change detection techniques in Remote sensing A review. International journal of wireless and mobile communcation for industrial systems. 2017. Vol. 4. no. 1. pp. 1—8. DOI: 10.21742/ijwmcis.2017.4.1.01.

20. El Gammal E.A., Salem S.M., El Gammal A.E.A. Change detection studies on the world’s biggest artificial lake (Lake Nasser, Egypt). Egypt Journal of Remote Sensing & Space Science. 2010. Vol. 13. no. 2. P. 89–99. DOI: 10.1016/j.ejrs.2010.08.001.

21. Landsat science, URL:http://landsat.gsfc.nasa.gov.

22. Earth explorer, 2020, URL:http://earthexplorer.usgs.gov.

23. Lea C., Curtis A.C. Thematic Accuracy Assessment Procedures. National park service vegetation inventory. 2010. Version 2.0. Natural resource report NPS/NRPC/NRR-2010/204. National park Service, Fort Collins, Colorado, USA.

24. Lu D., Weng Q. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County Indiana. Photogrammetric engineering and remote sensing. 2005. Vol. 71. no. 11. pp. 1275–1284.DOI: 10.14358/PERS.71.11.1275.

25. Harris P.M., Ventura S.J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogrammetric engineering and remote sensing. 1995. Vol. 61. no. 8. pp. 993–998.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.