Estimating the strength and elasticity of rocks in the Dagi formation on the Sakhalin shelf

Authors: Zhukov V. S.

Resource development on the Sakhalin shelf requires estimating the deformation– strength and elastic characteristics of rocks as these values are needed both in well construction and in hydrocarbon reservoir engineering. The test subjects in determining the elasticity parameters and strength in compression and tension were dry cylindrical sandstone specimens with porosity from 10 to 26.5%. The specimens were made of core sampled from the Permianage Dagi formation using wells drilled on the eastern shelf of the Sakhalin Island. The tensile/compressive strengths, Young’s modulus (elasticity), Poisson’s ratio and the failure envelopes of rocks were determined in compliance with the state standards. The direct linear dependence revealed between the ultimate compression strength and porosity of the specimens can be recommended for estimating the strength of rocks depending on their porosity. The relationship between the ultimate compression strength and P-wave velocity also appeared to be informative and allowed the strength evaluation as function of the compressional velocity. On the other hand, the correlation of the ultimate tension strength and porosity of the test specimens provided no admissible dependence between these parameters. The standard tests yielded average estimations of strength and elastic characteristics for dry specimens of the Dagi formation sandstone in atmospheric conditions: compressive strength 27.2 MPa; tensile strength 5.77 MPa; Young’s modulus (statics/dynamics) 6.13/6.37 GPa; Poisson’s ratio (statics/ dynamics) 0.225/0.237; cohesion 7.00 MPa; angle of rupture (internal friction) 36.3 deg.      A few Mohr’s circles are plotted by the minimal, maximal and average values of the ultimate strength in compression and tension. The Mohr’s envelopes allowed evaluating the normal and shear stresses in the transition from the elastic to plastic deformation and made it possible to calculation the cohesion and angle of rupture. For the range of the effective compressive stresses from 40 to 50 MPa, close to the formation conditions, it is shown that the internal friction angle is 6.8 deg and the cohesion is 17.77 MPa.

Keywords: rock, sandstone, porosity, compressional velocities, compression strength tension strength, elastic characteristics, failure envelope, Mohr’s circles.
For citation:

Zhukov V. S. Estimating the strength and elasticity of rocks in the Dagi formation on the Sakhalin shelf. MIAB. Mining Inf. Anal. Bull. 2020;(4):44-57. [In Russ]. DOI: 10.25018/02361493-2020-4-0-44-57.

Acknowledgements:
Issue number: 4
Year: 2020
Page number: 44-57
ISBN: 0236-1493
UDK: 622.023.25:539.32
DOI: 10.25018/0236-1493-2020-4-0-44-57
Article receipt date: 17.10.2019
Date of review receipt: 21.01.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

V.S. Zhukov, Dr. Sci. (Eng.), Senior Researcher, Chief Researcher, «Gazprom VNIIGAZ» Ltd., Moscow, Russia, e-mail: VZhukov@vniigaz.gazprom.ru.

 

For contacts:
Bibliography:

1. Zhukov V. S., Kuz'min Yu. O. Physical modeling of modern geodynamic processes. Gornyy informatsionno-analiticheskiy byulleten’. 2003, no 5, pp. 71—77. [In Russ].

2. Zhukov V. S. Estimating the strength and elasticity of rocks in the Dagi formation on the Sakhalin island shelf. Osvoenie resursov nefti i gaza rossiyskogo shel'fa: Arktika i Dal'niy Vostok (ROOGD-2018): tezisy dokladov VII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii 27–28 noyabrya 2018 g. [Russian Offshore Oil and Gas Development: Arctic and Far East (ROOGD-2018): VII International Scientific–Technical Conference Proceedings, 27–28 November 2018 ], Moscow, Gazprom VNIIGAZ, 2018, pp. 29. [In Russ].

3. Zoback M. D. Reservoir geomechanics. Cambridge university press. 2007. 505 p.

4. Schön J. H. Physical properties of rock, Handbook of Petroleum Exploration and Production, Elsevier, USA, 2015. 494р.

5. Chang C., Zoback M. D., Khaksar A. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 2006, Vol. 51, No 3, pp. 223–237.

6. Sone H., Zoback M. D. Mechanical properties of shale-gas reservoir rocks—Part 1: Static and dynamic elastic properties and anisotropy. Geophysics, 2013, Vol. 78, No 5, рр. 381–392.

7. Hoek E., Martin C. D. Fracture initiation and propagation in intact rock — a review. Journal of Rock Mechanics and Geotechnical Engineering, 2014, Vol. 6, No 4, рр. 278—300.

8. Jamshidi A., Zamanian H., Sahamien R. Z. The effect of density and porosity on the correlation betmeen uniaxial compressive strength and p-wave velocity. Rock Mechanics and Rock Engineering, 2018, Vol. 51, pp. 1279–1286.

9. Kaiser P. K., Kim B. H. Characterization of strength of intact brittle rock considering confinement-dependent failure processes. Rock Mechanics and Rock Engineering, 2015, Vol. 48, pp. 107—119.

10. Motra H. B., Zertani S. Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites. Journal of Rock Mechanics and Geotechnical Engineering. 2018, Vol. 10, No 1, рр. 127—137. DOI: 10.1016/j.jrmge.2017.11.001.

11. Turank K., Furmentro D., Denni A. Wave propagation and interfaces in rocks. Mekhanika gornykh porod primenitel'no k problemam razvedki i dobychi nefti. Sbornik nauchnykh statey [Rock mechanics in oil prospecting and production. Collection of scientific articles], Moscow, Mir, 1994, pp. 176—184.

12. Zhukov V. S. Assessment of fracturing in reservoirs by elastic wave velocity. Problemy resursnogo obespecheniya gazodobyvayushchikh rayonov Rossii do 2030 g. Sbornik nauchnykh statey [Resource supply problems in gas producing areas in Russia to 2030. Collection of scientific articles], Moscow, OOO «Gazprom VNIIGAZ», 2012, pp. 148—152.

13. Zhukov V. S. Patent RU 2516392, 13.09.2012.

14. Zhukov V. S., Motorygin V. V. Patent RU 2646956, 31.05.2017.

15. Zhukov V. S., Motorygin V. V. Effect of inter-grain porosity and joint porosity on Pwave velocity in rocks. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki. 2018, no 3 (35), pp. 249—255. [In Russ].

16. Tsoy P.A., Usol'tseva O. N. Use of Mohr’s circles for the connection and model estimation of strength data in different size rock samples. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2019, no 2, pp. 23—29. [In Russ].

17. Khazhyylay Ch. V., Eremenko V.A., Kosyreva M.A., Yanbekov A. M. In-situ rock mass failure envelope plotting using the Hoek–Brown criterion and RocData software toolkit. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 12, pp. 92–101. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-92-101.

18. Korshunov V.A., Kartashov Yu. M., Kozlov V.A. Determination of rock failure envelope by fracturing rock samples by spherical indenters. Zapiski Gornogo instituta. 2010. vol. 185, pp. 41—45. [In Russ].

19. Latyshev O. G., Kornilkov M. V. Napravlennoe izmenenie fraktal'nykh kharakteristik, svoystv i sostoyaniya porod poverkhnostno-aktivnymi veshchestvami v protsessakh gornogo proizvodstva: nauchnaya monografiya [Directed change in fractal characteristics, properties and behavior of rocks by surface active substances in mining processes: scientific monograph], Ekaterinburg, Izd-vo UGGU, 2016, 407 p.

20. Kartashov Yu. M., Matveev B. V., Mikheev G. V. Prochnost' i deformiruemost' gornykh porod [Strength and deformability of rocks], Moscow, Nedra, 1979, 269 p.

Subscribe for our dispatch