Influence exerted by underground excavation shape and by effective stresses on the formation of a tensile strain zone at a depth greater than 1 km

The article presents the studies into the secondary stress field formed in surrounding rock mass around underground excavations of different cross-sections and the variants of principal stresses at a mining depth greater than 1 km. The stress–strain analysis of surrounding rock mass around development headings was performed in Map3D environment. The obtained results of the quantitative analysis are currently used in adjustment of the model over the whole period of heading and support of operating mine openings. The estimates of the assumed parameters of excavations, as well as the calculations of micro-strains in surrounding rock mass by three scenarios are given. During heading in the test area in granite, dense fracturing and formation of tensile strain zone proceeds from the boundary of e3 ≥ 350µe and is used to determine rough distances from the roof (Hroof) and sidewalls (Hside) of an underground excavation to the boundary e3 = 350µe (probable rock fracture zone). The modeling has determined the structure of secondary stress and strain fields in the conditions of heading operations at great depths.

Keywords: tensile strains, compression, fractures, effective stresses, cross-section, roof and sidewalls, depth greater than 1 km, rock, Map3D and RocData, model adjustment.
For citation:

Nguyen Van Min, Eremenko V.A., Sukhorukova M.A., Shermatova S. S. Influence exerted by underground excavation shape and by effective stresses on the formation of a tensile strain zone at a depth greater than 1 km. MIAB. Mining Inf. Anal. Bull. 2020;(6):67-75. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-67-75.

Acknowledgements:
Issue number: 6
Year: 2020
Page number: 67-75
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236-1493-2020-6-0-67-75
Article receipt date: 26.02.2020
Date of review receipt: 01.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Nguyen Van Min1, Graduate Student, e-mail: minhnv@utt.edu.vn,
V.A. Eremenko1, Dr. Sci. (Eng.), Professor, Director of Research Center for Applied Geomechanics and Convergent Technologies in Mining, NUST MISIS, e-mail: prof.eremenko@gmail.com,
M.A. Sukhorukova1, Engineer, e-mail: marinasuhruk242822@yandex.ru,
S.S. Shermatova, Educational Master, e-mail: s_shermatova@inbox.ru, Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, 117198, Moscow, Russia,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.A. Eremenko, e-mail: prof.eremenko@gmail.com.

Bibliography:

1. Xie H., Gao F., Ju Y., Gao M., Zhang R., Gao Y., et al. Quantitative definition and investigation of deep mining. Journal of the China Coal Society. 2015. Vol. 40. No 1. Pp. 1—10.

2. Lushnikov V. N., Sendi M. P., Eremenko V.A., Kovalenko A.A., Ivanov I.A. Method of definition of the zone of rock massif failure range around mine workings and chambers by numerical modeling. Gornyi Zhurnal. 2013, no 12, pp. 11—16. [In Russ].

3. Eremenko V.A., Aksenov Z. V., Pul E. K., Zakharov N. E. MAP 3D analysis of secondary stress field structure in face area of development headings in rockburst-hazardous seams. MIAB. Mining Inf. Anal. Bull. 2020;(5):91-104. [In Russ]. DOI: 10.25018/0236-1493-20205-0-91-104.

4. Kozyrev A.А., Semenova I.E., Zhuravleva O.G., Panteleev A.V. Hypothesis of strong seismic event origin in Rasvumchorr Mine on January 9, 2018. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 12, pp. 74—83. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-74-83.

5. Zubov V. P. Applied technologies and current problems of resource-saving in underground mining of stratified deposits. Gornyi Zhurnal. 2018, no 6, pp. 77—83. [In Russ].

6. Sidorov D. V., Ponomarenko T. V., Larichkin F. D., Vorob'ev A. G. Economic justification of innovative solutions on loss reduction in the aluminium sector of Russia. Gornyi Zhurnal. 2018, no 6, pp. 5—68. [In Russ].

7. Terzaghi K., Peck R. B. Soil mechanics in engineering practice. Wiley, New York. 1967.

8. Griffith A.A. The theory of rupture, Proceedings of First International Congress of Applied Mechanics. Delft. 1924, pp. 55—93.

9. Hoek E., Brown E. T. Underground excavations in rock. London: Institute of Mining and Metallurgy, 1980.

10. Sheorey P. R., Biswas A. K., Choubey V. D. An empirical failure criterion for rocks and jointed rock masses. Engineering Geology. 1989. Vol. 26. Pp. 141—159.

11. Eremenko V.A., Aynbinder I. I., Patskevich P. G., Babkin E.A. Assessment of the state of rocks in underground mines at the Polar Division of Norilsk Nickel. Gornyy informatsionnoanaliticheskiy byulleten’. 2017, no 1, pp. 5—17. [In Russ].

12. Vysotin N. G., Kosyreva M.A., Leyzer V. I., Aksenov Z. V. Design rationale for engineering multipurpose bench for physical simulation of geomechanical processes in secondary stress fields under conditions of mining with convergent geotechnologies. MIAB. Mining Inf. Anal. Bull. 2019;(10):131-145. [In Russ]. DOI: 10.25018/0236-1493-2019-10-0-131-145.

13. Fairhurst C., Cook N. G. W. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface. Proceedings 1st Congress of the International Society for Rock Mechanics. Lisbon. 1966. Vol. 1. Pp. 687—692.

14. Kuijpers J. Fracturing around highly stressed excavations in brittle rock. Journal of the South African Institute of Mining and Metallurgy. 2000. Vol. 100. Pp. 325—332.

15. Ndlovu X., Stacey T. R. Observations and analyses of roof guttering in a coal mine. Journal of the South African Institute of Mining and Metallurgy. 2007. Vol. 107. Pp. 477—491.

16. Stacey T. R. A simple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences. 1981. Vol. 18. Pp. 469—474.

17. Jiang Q., Feng X., Song L., Gong Y., Zheg H., Cui J. Modeling rockspecimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica. 2015. Vol. 32. No 1. Pp. 524—535.

18. Kong L., Ostadhassan M., Li C., Tamimi N. Rock Physics and geomechanics of 3D printed rocks. ARMA 51st U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, California, USA. Conference Paper. 2017, pp. 1—8.

19. Gell E. M., Walley S. M., Braithwaite C. H. Review of the validity of the use of artificial specimens for characterizing the mechanical properties of rocks. Rock Mechanics and Rock Engineering. 2019. No 3. Pp. 1—13.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.