Evaluation of environmental impact of mining waste using GIS technologies

Authors: Усиков В. И., Липина Л. Н., Александров А. В., Корнеева С. И.

Mineral mining is one of the critical environmental impacts. This problem is of particular concern at the objects put out of service as they are uncontrolled. This article, in terms of a tailings pond of the Central concentration mill of Solnechny Mining and Processing Plant in the Komsomolsk tin district, describes construction of an integrated model based on interpretation of satellite images, digital terrain model with STRTM03 elevation matrix draped with Landsat8 image and the calculated parameters of chemical contamination propagation in the local area. The features of the contamination propagation are estimated. For the Low Amur industrial district, the aspects of mining waste formation and environmental impact are discussed. The ways of dealing with ecological and safety problems in the region are shown. It is proposed to introduce new technologies of efficient waste and recycling water treatment with ecologically safe agents at the mining and processing plants. In mining and processing waste management, it is natural to assume mining waste as a new resource of subsoil potential maintenance and alteration for further utilization. In both districts discussed, the geoecological errors of infrastructure planning are revealed, and the suggestions on their prevention in the future are made.

Keywords: Environment, mining waste, tailings pond, GIS technologies, satellite images, modeling, ecological safety, heavy metals.
For citation:

Usikov V. I., Lipina L. N., Alexandrov A. V., Korneeva S. I. Evaluation of environmental impact of mining waste using GIS technologies. MIAB. Mining Inf. Anal. Bull. 2019;(12):114-126. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-114-126.

Issue number: 12
Year: 2019
Page number: 114-126
ISBN: 0236-1493
UDK: 574:004
DOI: 10.25018/0236-1493-2019-12-0-114-126
Article receipt date: 07.02.2019
Date of review receipt: 02.10.2019
Date of the editorial board′s decision on the article′s publishing: 11.11.2019
About authors:

V.I. Usikov1, Cand. Sci. (Econ.), Senior Researcher,
e-mail: v-i-usikov@yandex.ru,
L.N. Lipina1, Cand. Sci. (Eng.), Senior Researcher,
e-mail: geo-lipina@rambler.ru,
Pacific National University, 680035, Khabarovsk, Russia,
A.V. Alexandrov1, Dr. Sci. (Eng.), Leading Researcher,
е-mail: IGDALEX@rambler.ru,
S.I. Korneeva1, Cand. Sci. (Eng.), Senior Researcher,
e-mail: s-korneeva@mail.ru,
1 Mining Institute, Far Eastern Branch of Russian Academy of Sciences,
680000, Khabarovsk, Russia.

For contacts:

L.N. Lipina, e-mail: geo-lipina@rambler.ru.


1. Rasskazov I. Yu., Grekhnev N. I., Aleksandrova T. N. Technogenic deposits in the dumps of mining and processing plants of the Far Eastern region. Tikhookeanskaya geologiya. 2014. Vol. 33, no 1, pp. 102 —114. [In Russ].
2. Resursosberezhenie. Obrashchenie s otkhodami. Pasport otkhoda I—IV klassa opasnosti. GOST R 53691-2009. [Resource Saving. Waste management. Passport of I—IV hazard class waste. State Standart R 53691-2009].
3. Saksin B. G., Krupskaya L. T., Ivlev A. M. Regional'naya ekologiya gornogo proizvodstva [Regional ecology of mining production], Khabarovsk, IGD DVO RAN, 2004, pp. 221—224.
4. Zvereva V. P. Ekologicheskie posledstviya gipergennykh i tekhnogennykh protsessov na olovorudnykh mestorozhdeniyakh Dal'nego Vostoka [Ecological consequences of hypergenic and technogenic processes in tin ore deposits of the Far East], Vladivostok, DVGI DVO RAN, DVGU, 2008, 195 p.
5. Ross Z., Jerrett M., Ito K., Tempalski B., Thurston G. D. A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment. 2007;41(11):2255—2269. http://dx.doi.org/10.1016/j.atmosenv.2006.11.012.
6. Aleksandrova T. N., Romashev A. O., Nikolaeva N. V. Ecological-oriented approach in the processing of man-made waste. Gornyy informatsionno-analiticheskiy byulleten’. 2017, Special edition S5-2, pp. 178—186. [In Russ].
7. Monique da Silva Dias A., Fonseca A., Paglia A. P. Biodiversity monitoring in the environmental impact assessment of mining projects: A (persistent) waste of time and money?. Perspectives in Ecology and Conservation. July—September 2017;15(3):206—208. DOI:10.1016/j.pecon.2017.06.001
8. Gareth Ress W. Remote sensing of show and ice, BocaRaton, FL: Taylor&Francis Group, 2006.
9. Henckens M. L. C. M., Ryngaert C. M. J., Driessen P. P. J., Worrell E. Normative principles and the sustainable use of geologically scarce mineral resources. Resources Policy. August 2018. DOI: 10.1016/j.resourpol.2018.08.007.
10. Parshin A. B., Spiridonov A. M. Methodical and technical solutions of geological and geochemical GIS to ensure comprehensive scientific research of gold ore objects. Geologiya i mineral'no-syr'evye resursy Sibiri. 2014, no 3, pp. 72—76. [In Russ].
11. Padro J. C., Carabassa V., Balaque J., Brotons, L., Alcaniz J., Flcaniz, Pons X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Science of the Total Environment. 2019;657:1602—1614. DOI: 10.1016/j.scitotenv.2018.12.156.
12. Monique da Silva Dias A., Fonseca A., Paglia A. P. Technical quality of fauna monitoring programs in the environmental impact assessments of large mining projects in southeastern Brazil. Science of The Total Environment. 2019;650(1):216—223.
13. Poluchenie besplatnykh kosmicheskikh snimkov LandsatTM, Landsat TM,ETM+ cherez Glovis [Getting free satellite images of LandsatTM, Landsat TM, ETM + via Glovis], available at: http://gis-lab.info/qa/landsat-glovis.html.
14. Taganov A., Kolesenkov A., Babaev S. Ecological monitoring of dangerous objects on the basis of vegetation indexing and evolutionary approach. 5th Mediterranean Conference on Embedded Computing, MECO 2016. Conference Paper. June 2016:468—472. DOI: 10.1109/MECO.2016.7525694.
15. Shovengerdt R. A. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheniy [Remote sensing. Models and methods of image processing], Moscow,Tekhnosfera, 2013, 592 p.
16. GIS-Lab. available at: http://gis-lab.
17. Index of /srtm/version2. available at: https://dds.cr.usgs.gov/srtm/version2_1/ (srtm03v1,2.1, srtm30).
18 SelectionSynonyms, SelectionAntonyms. available at: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (srtm03v4).
19. Barlow J., Franklin S., Martin Y. High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogrammetric Engineering and Remote Sensing. 2006;72(6):687—692.
20. Xinnan Li, Xijie Feng, Xiaoni Li, Chuanyou Li, Quanxing Luo Geological and geomorphological evidence for active faulting of the southern Liupanshan fault zone, NE Tibetan Plateau. Geomorphology. Vol. 345, 15 November 2019. DOI: 10.1016/j.geomorph.2019.106849.
21. Grekhnev N. I., Usikov V. I., Lipina L. N. The use of information technology in the environmental and geochemical assessment of waste mining and processing plants of the south of the Far East. Gornyy informatsionno-analiticheskiy byulleten’. 2013. Special edition 4, pp. 308—317. [In Russ].
22. Usikov V. I., Lipina L. N. Use of information technologies in ecological and geochemical assessment of waste of mining and processing plants of the South of the Far East. Ekologiya promyshlennogo proizvodstva. 2016, no 4, pp. 2—8. [In Russ].
23. Gosudarstvennyy doklad ob okhrane okruzhayushchey sredy Khabarovskogo kraya v 2016 godu [State report on the environmental protection of the Khabarovsk Territory in 2016], available at: https://mpr.khabkrai.ru/Deyatelnost/Ekologiya/84. [In Russ].
24. Budaev S. L. Povyshenie ekologicheskoy bezopasnosti zolotoizvlekatel'nykh fabrik putem effektivnogo obezvrezhivaniya proizvodstvennykh vod [Improving the environmental safety of gold-mining factories through effective disposal of industrial water], Candidate’s thesis, Ulan-Ude, 2016, 18 p.

Mining World Russia
Subscribe for our dispatch