Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics

Geological engineering often uses geomechanical modeling aimed to enhance efficiency of mining or performance of structures. One of the input parameters for such models are the static elastic moduli of rocks. This article presents the studies into the physical and mechanical properties of rocks—limestone of non-metamorphic diagenesis. The precision measurements of Pand S-waves are carried out to an accuracy of 0.2% by laser ultrasonics. The static moduli of elasticity and the deformation characteristics of rocks are determined in the uniaxial compression tests by the standards of GOST 21153.2-84 and GOST 28985-91, respectively. The correlation dependence is found between the static and dynamic elasticity moduli in limestone samples. The found correlation allows drawing the conclusion that the static modulus of elasticity can be estimated in non-destructive tests, which largely simplifies preliminary diagnostics of samples in case of limited number of test core.

Keywords: core, limestone, laser ultrasonics, static elasticity modulus, dynamic elasticity modulus, correlation dependence.
For citation:

Shibaev I. A., Vinnikov V.A., Stepanov G. D. Determining elastic properties of sedimentary strata in terms of limestone samples by laser ultrasonics. MIAB. Mining Inf. Anal. Bull. 2020;(7):125-134. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-125-134.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 19-31-27001.

Issue number: 7
Year: 2020
Page number: 125-134
ISBN: 0236-1493
UDK: 622.023.25:539.32+620.179.16
DOI: 10.25018/0236-1493-2020-7-0-125-134
Article receipt date: 13.03.2020
Date of review receipt: 08.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.06.2020
About authors:

I.A. Shibaev1, Graduate Student, e-mail: mrdfyz@mail.ru,
V.A. Vinnikov1, Dr. Sci. (Phys. Mathem.), Assistant Professor, Head of Chair, e-mail: evgeny.vinnikov@gmail.com,
G.D. Stepanov1, Student, e-mail: georgest0503@yandex.ru,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.A. Vinnikov, e-mail: evgeny.vinnikov@gmail.com.

Bibliography:

1. Canady W. J. A method for full-range Young's Modulus correction. Paper SPE 143604, presented at the SPE North American Unconventional Gas Conference and Exhibition held in The Woodlands, Texas, USA. 14—16 June 2011.

2. Morozov V. N., Manevitch A. I., Tatarinov V. N. Stress state modeling and geodynamic zoning in seismically active regions. MIAB. Mining Inf. Anal. Bull. 2018, no 8, pp. 123–132. [In Russ]. DOI: 10.25018/0236-1493-2018-8-0-123-132.

3. Sas I. E., Morozov D. V., Morozov N. A. On calculation of the bearing capacity of selfopening ground anchors using PLAXIS 2D software package. Durability of Critical Infrastructure, Monitoring and Testing. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2017. Pp. 104—109. DOI: 10.1007/978-981-10-3247-9_12.

4. Porody gornye. Metody opredeleniya predelaprochnosti pri odnoosnom szhatii. GOST 21153.2-84 [Rocks. Methods for determination of axial compression strength. State Standart 21153.2-84], Moscow, Izdatel'stvo standartov, 2001, 8 p.

5. Porody gornye. Metod opredeleniya deformatsionnykh kharakteristik pri odnoosnom szhatii. GOST 28985-91 [Rocks. Method for determination of deformation characteristics under uniaxial compression. State Standart 28985-91], Moscow, Izdatel'stvo standartov, 2004, 11 p.

6. Usol'tseva O. M., TSoy P.A., Semenov V. N. Influence of the structure of layered rocks and geomaterials on the deformation and strength properties of tension and volume compression. Interekspo Geo-Sibir'. 2016. vol. 2, no 4, pp. 48—53. [In Russ].

7. Saenger E. H., Kruger O. S., Shapiro S. A. Effective elastic properties of fractured rocks: dynamic vs. static considerations. International Journal of Fracture. 2006. Vol. 139. No 3. Pp. 569–576.

8. Christaras B., Auger F., Mosse E. Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Materials and Structures. 1994. Vol. 27. No 4. Pp. 222—228.

9. Frolova Yu. V., Patrusheva N. A. Comparative analysis of static and dynamic elastic modulus of granites and gneisses of the Aldan shield. Sergeevskie chteniya. Inzhenernaya geologiya i geoekologiya. Fundamental'nye problemy i prikladnye zadachi [Sergeyev readings. Engineering Geology and Geoecology Fundamental Problems and Applied Problems], Moscow, RUDN, 2016, pp. 100—105.

10. King M. S., Static and dynamic elastic properties of rocks from the Canadian shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1983. Vol. 20. No 5. Pp. 237—241.

11. Svod pravil po inzhenernym izyskaniyam dlya stroitel'stva SP 11-105-97. Inzhenernogeologicheskie izyskaniya dlya stroitel'stva. Ch. VI. Pravila proizvodstva geofizicheskikh issledovaniy [The code of rules for engineering surveys for construction SP 11-105-97. Engineeringgeological surveys for construction. Part VI. Rules for the production of geophysical surveys], 2004. [In Russ].

12. Shibaev I. A., Cherepetskaya E. B., Bychkov A. S., Zarubin V. P., Ivanov P. N. Evaluation of the internal structure of dolerite specimens using X-ray and laser ultrasonic tomography. International Journal of Civil Engineering and Technology. 2018. Vol. 9. No 9. Pp. 84—92.

13. Cherepetskaya E. B., Karabutov A. A., Makarov V.A., Mironova E. A., Shibaev I. A., Vysotin N. G., Morozov D. V. Internal structure research of shungite by broadband ultrasonic spectroscopy. Key Engineering Materials. 2017. Vol. 755. Pp. 242—247.

14. Kravcov A. A., Konvalinka A., Vinnikov V.A., Shibaev I. A., Ivanov P. N. On the issue of typical grain size assessment by the methods of broadband laser opto-acoustics. Key Engineering Materials. 2017. Vol. 755. Pp. 212—218.

15. Zarubin V. P., Bychkov A. S., Simonova V.A., Zhigarkov V. S., Karabutov A. A., Cherepetskaya E. B. A refraction-corrected tomographic algorithm for immersion laser ultrasonic imaging of solids with piecewise linear surface profile. Applied Physics Letters. 2018. Vol. 112. No 21. Article 214102.

16. Bychkov A. S., Zarubin V. P., Karabutov A. A., Simonova V.A., Cherepetskaya E. B. On the use of an optoacoustic and laser ultrasonic imaging system for assessing peripheral intravenous access. Photoacoustics. 2017. Vol. 5. Pp. 10—16. DOI: 10.1016/j.pacs.2017.01.002.

17. Karabutov A. A., Podymova N. B., Cherepetskaya E. B. Measuring the dependence of the local Young's modulus on the porosity of isotropic composite materials by a pulsed acoustic method using a laser source of ultrasound. Journal of Applied Mechanics and Technical Physics. 2013. Vol. 54. No 3. Pp. 500—507.

18. Bychkov A. S., Cherepetskaya E. B., Karabutov A. A., Makarov V.A. Laser optoacoustic tomography for the study of femtosecond laser filaments in air. Laser Physics Letters. 2016. Vol. 13. No 8. Article 085401.

19. Kravcov A., Shibaev I. A., Blokhin, D.I., Bychkov A. S., Cherepetskaya E. B., Krapivnoi M. M., Zarubin V. P. Examination of structural members of aerial vehicles by laser ultrasonic structuroscopy. International Journal of Civil Engineering and Technology. 2018. Vol. 9. No 11. Pp. 2258—2265.

20. Bychkov A. S., Simonova V.A., Zarubin V. P., Cherepetskaya E. B., Karabutov A. A. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry. A review. Applied Sciences (Switzerland). 2018. Vol. 8. No 10. Article 1931.

21. Cherepetskaya E. B., In'kov V. N. Experimental study of nonlinear distortion of the form of powerful ultrasonic pulses during their propagation in rocks. MIAB. Mining Inf. Anal. Bull. 2005, no 3, pp. 41—44. [In Russ].

22. Martınez-Martınez J., Benavente D., Garcıa-del-Cura M. A. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bulletin of Engineering Geology and the Environment. 2012. Vol. 71. No 2. Pp. 263—268.

23. Kravtsov A., Ivanov P. N., Malinnikova O. N., Cherepetskaya Е. B., Gapeev A. A. Laser– ultrasonic spectroscopy of the Pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019;(6):56-65. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-56-65.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.