Stability estimation and justification of support systems in transition to underground mining in the Olimpiada deposit

The article discusses the procedure and principles of support system designs for horizontal and inclined excavations in coherent transition from open to underground mining in terms of the Olimpiada deposit in the Krasnoyarsk Krai. This study is specific for using the information on rock mass obtained at the stage of opencast mining. The main criteria were the Olimpiada rock mass classification indexes determined during operation of the Vostochny open pit mine. Stability and service life of underground excavations without support were estimated using Bieniawski’s RMR system, and support designs were selected using Q-index introduced by Barton. A 3D block model is developed for the on-line determination of mine support stability at the stage of mine planning. Three-dimensional numerical modeling methods are used to assess probability of seismic events in the form of rock bursts on approach of underground excavations and fault zones in the Olimpiada deposit.

Keywords: underground mine support, stability, rock mass, rock mass classification systems, three-dimensional numerical modeling, three-dimensional block modeling, stress–strain behavior.
For citation:

Bushkov V. K., Shemetov R. S. Stability estimation and justification of support systems in transition to underground mining in the Olimpiada deposit. MIAB. Mining Inf. Anal. Bull. 2020;(9):40-54. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0-40-54.

Acknowledgements:
Issue number: 9
Year: 2020
Page number: 40-54
ISBN: 0236-1493
UDK: 622.28
DOI: 10.25018/0236-1493-2020-9-0-40-54
Article receipt date: 03.02.2020
Date of review receipt: 10.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.08.2020
About authors:

V.K. Bushkov1, Cand. Sci. (Eng.), Assistant Professor, Mining Engineer, Head of Laboratory, e-mail: bushkovvk@polyus.com,
R.S. Shemetov1, Mining Engineer, Leading Engineer, e-mail: shemetovrs@polyus.com,
1 LLC «Polyus Project», 660041, Krasnoyarsk, Russia.

 

For contacts:

R.S. Shemetov, e-mail: shemetovrs@polyus.com.

Bibliography:

1. Zemlyanoy M. A. Analysis of strata pressure effect on mine structure in the time of mineral mining preparation. MIAB. Mining Inf. Anal. Bull. 2010, no 4, pp. 25—26. [In Russ]

2. Bragin E. P., Vitkalov V. G., Fam Chung Ngueni Strata pressure on powered roof support in longwall face. MIAB. Mining Inf. Anal. Bull. 2010, no 10, pp. 37—40. [In Russ]

3. Remezov A. V., Klimov V. V. Influence of abutment pressure and higher strata pressure zones on longwalls. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2011, no 4 (86), pp. 40—43. [In Russ]

4. Sidorov D. V. Geomechanical justification of safe design for pillars between drilling and haulage roadways in the zones of higher strata pressure. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2011, no 1, pp. 374—378. [In Russ]

5. Sashurin A. D., Konovalenko V.Ya. Displacement of rocks and protection of structures in transition to underground mining at the Udachnaya pipe. Gornyi Zhurnal. 2011, no 8, pp. 77—79. [In Russ].

6. Gregory Paul Dyke. A quantitative correlation between the mining rock mass rating and in-situ rock mass rating classification systems. Johannesburg, 2006. 128 p.

7. Barton N. Rock quality, seismic velocity, attenuation and anisotropy. Taylor & Francis Group, London, UK, 2007. 756 p.

8. Yetkin M. E., Ozfirat M. K., Yenice H., Simsir F., Kahraman B. Examining the relation between rock mass cuttability index and rock drilling properties. Journal of African Earth Sciences. 2016. Vol. 124. Pp. 151—158. DOI: 10.1016/j.jafrearsci.2016.09.025.

9. Meshram V. M., Dahale P. P., Tiwari M. S., Ramteke S. B. Advancement of support system for underground drift excavation — a review. International Journal of Civil Engineering and Technology. 2018. Vol. 9. No 6. Pp. 332—339.

10. Bieniawski Z. T. Engineering rock mass classifications. New York: Wiley, 1989, 251 p.

11. Aksoy S. O. Rock mass classification systems: history, ranges of application, constraints. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2008, no 1, pp. 56—68. [In Russ].

12. Metodicheskie ukazaniya po vyboru tipa i parametrov krepi gornykh vyrabotok v usloviyakh Orlovskogo rudnika [Guidelines on support system design in the Orlovsky Mine, Kazakhmys PLC ], Ust'-Kamenogorsk, TOO «Korporatsiya Kazakhmys», 2012. 85 p. [In Russ]

13. Using the Q-system: Rock mass classification and support design, Handbook. Norwegian Geotechnical Institute (NGI), Oslo, 2015, 57 p.

14. Protosenya A. G. Geomekhanika: metodicheskie ukazaniya k kursovomu proektirovaniyu [Geomechanics: Guidelines on engineering design], Saint-Petersburg, SPGU, 2017, 59 p.

15. Pham C., Chang C., Jang Y., Kutty A., Jeong J. Effect of faults and rock physical properties on in situ stress within highly heterogeneous carbonate reservoirs. Journal of Petroleum Science and Engineering. 2019. Vol. 185. Article 106601. DOI: 10.1016/j.petrol.2019.106601.

16. Naji A. M., Rehman H., Yoo H., Emad M. Z., Ahmad S., Kim J. J. Static and dynamic influence of the shear zone on rockburst occurrence in the headrace tunnel of the Neelum Jhelum hydropower project, Pakistan. Energies. 2019. Vol. 12. No 11. Article 2124. DOI: 10.3390/ en12112124.

17. Loushnikov V. N. Practical aspects of geotechnical engineering in underground mining. KarGTU MEngSc — 2012.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.