Optimized control over modes of hydraulic percussion cutting heads of mining machines

The main cause of the disagreement between the actual and calculated output data of hydraulic percussion mining machines is the erroneous feed of manipulation signals by the control units. For the maximal fitting of the calculated and actual figures, the continuous method of control action using the third time derivative of the law of motion of the main function element is accepted, namely, the accuracy. The mathematical models of control using displacement, velocity and acceleration are developed. The service factors of mining machines are found. Based on the theory of control and the mathematical logic theory, the logical circuits of formation of manipulation signals in each phase of the working cycle are developed. The main elements are converters, integrators and accumulators ensuring decomposition of elements of the logical circuits and further generation of appropriate control action. It is found that the simplest way is to generate the control action for acceleration of the key function element. For the developed circuits, it is recommended to use general charts of the control action change, implementable for a certain design of hydraulic percussion cutting heads in certain operating conditions.

Keywords: mining machines, cutting head, hydraulics, impact unit, control unit, control action, law of motion, displacement, velocity, acceleration, accuracy, mathematical model, service factors, logical circuits, manipulation signal, working cycle, general chart.
For citation:

Smirnov Yu. M., Kenzhin B. M., Smakova N. S., Zhurunova M.A. Optimized control over modes of hydraulic percussion cutting heads of mining machines. MIAB. Mining Inf. Anal. Bull. 2020;(6):95-104. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-95-104.

Issue number: 6
Year: 2020
Page number: 95-104
ISBN: 0236-1493
UDK: 622.23.05:622.235
DOI: 10.25018/0236-1493-2020-6-0-95-104
Article receipt date: 30.01.2020
Date of review receipt: 06.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.05.2020
About authors:

Yu.M. Smirnov1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: smirnov_y_m@mail.ru,
B.M. Kenzhin, Dr. Sci. (Eng.), Professor, Director, Karaganda Machine-Building Consortium, Karaganda, Kazakhstan, e-mail: kbmkz@mail.ru,
N.S. Smakova1, Doctoral Candidate, e-mail: nuri_5@mail.ru,
M.A. Zhurunova1, Engineer, e-mail: mairashka@mail.ru,
1 Karaganda State Technical University, 100027, Karaganda, Kazakhstan.


For contacts:

Yu.M. Smirnov, e-mail: smirnov_y_m@mail.ru.


1. Smirnov Yu. M., Kenzhin B. M., Smakova N. S. Model of interaction vibration-seismic array module with carbon and the results of its research. International Conference: Science and Education in XXI century. December 1, 2014, Bozeman, Montana, USA, pp. 186—189.

2. Smirnov Yu. M., Kenzhin B. M. Special features of processing and interpreting mining seismic acoustic information. Modern Technologies of mineral resources development. Collection of articles. Lambert Academic Publishing, 2012, pp. 1124—128.

3. Smirnov Yu. M., Kenzhin B. M., Zhurunova M.A. The results of «vibration-seismic-module-solid massif-disturbance» system simulation modeling. Eurasian Physical Technical Journal, 2011, Vol. 8, No 1 (15). Рp. 42—48.

4. Gorodilov L. V., Vagin D. V., Pashina O.A. Selection procedure of parameters for positive-displacement hydraulic percussion systems. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no 1, pp. 87—94. [In Russ].

5. Lu X.-Y. The fatigue behavior study of intelligent tower crane by finite element theory. International Journal of Control and Automation. 2015. Vol. 8. Issue 10, pp. 125—134.

6. Fan X.-N., Zhi B. Design for a crane metallic structure based on imperialist competitive algorithm and inverse reliability strategy. Chinese Journal of Mechanical Engineering. 2017, Vol. 30, Issue 4, pp. 900—912.

7. Briot S., Goldsztejn A. Topology optimization of industrial robots: Application to a five-bar mechanism. Mechanism and Machine Theory. 2018, Vol. 120, pp. 30—56.

8. Bobtsov A.A. Adaptivnoe i robastnoe upravlenie neopredelennymi sistemami po vykhodu [Adaptive and robust control over uncertain systems based on outputs], Saint-Petersburg, Nauka, 2011, 173 p.

9. Tomchina O. P., Gorlatov D. V., Tomchin D.A., Sventsitskaya T.A. Adaptive control algorithms for mechanical systems with fuzzy master model and filtration. Informatika i sistemy upravleniya. 2018, no 3(57), pp. 124—130. [In Russ].

10. Wand C., Lin Y. Decentralized adaptive tracking control for a glass of interconnected nonlinear time-varying sistems. Automatika. 2015. Vol. 54, pp. 16—24.

11. Tomchina O. P., Polyakhov D. N., Tokareva O. I., Fradkov A. L. Adaptive control over dynamic linear objects based on velocity gradient algorithms. Informatsionno-upravlyayushchie sistemy. 2019, no 3(100), pp. 37—44. [In Russ].

12. Асtrом К. J., Willenmark K. B. Adaptive control. Courir Corporation, 2013, 574 p.

13. Rustamov G.A., Farkhadov V. G., Rustamov R. G. Analysis of K-robust systems under limited control. Mekhatronika, avtomatizatsiya, upravlenie. 2018. Vol. 19, no 11, pp. 699—706. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.