Creating a digital twin of crushing and milling equipment reconditioning process

Modern machine building requires increasingly much supply of ferrous metals. The ferrous metal production needs raw materials in the form ore prepared at mining and processing plants. The uniqueness of mining and processing equipment is stipulated by its large size and weight; for this reason, maintenance and repair of such equipment is undertaken directly at installation sites. For the repair implementation, the process equipment is designed and installed at the future operation sites. It is important to ensure optimal arrangement of repair operations. The complexity of such work lies in the informational disconnect of data on technological capabilities of the available equipment of production systems at separate plants and their divisions, as well as in the low-level automation of design engineering and optimization of design solutions. The way out is creation of a digital twin of maintenance and repair processes, ensuring an integrated approach to production problem solution toward reliable functioning of equipment of a mining and processing plant. The digital twin makes it possible to shape a general production system based on production systems of separate repair organizations. The maintenance and repair processes are presented as a set of mathematical models which adequately describe how the processes run in the course of time. The digital twin provides information on a production system at any moment of time with regard to various events. The modeling uses the machinescale time; thus, the information is obtained on an instantaneous basis. This allows modeling various scenarios of maintenance and repair without delays for finding an optimal alternative. Alongside with mathematical modeling, it is required to develop relevant software programs. The supervision and control of maintenance and repair used the existing systems of project planning and management. In the proposed approach, the data are automatically fed from the computer-aided design system, which noticeably reduces workload of project development.

Keywords: digital clone, mining and processing plant, maintenance and repair, process equipment, production system, mathematical model, optimization, data base.
For citation:

Butko A. O., Kuznetsov P. M., Khoroshko L. L. Creating a digital twin of crushing and milling equipment reconditioning process. MIAB. Mining Inf. Anal. Bull. 2020;(8):130-144. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-130-144.

Acknowledgements:
Issue number: 8
Year: 2020
Page number: 130-144
ISBN: 0236-1493
UDK: 621.914
DOI: 10.25018/0236-1493-2020-8-0-130-144
Article receipt date: 17.02.2020
Date of review receipt: 16.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.07.2020
About authors:

A.O. Butko1, Cand. Sci. (Eng.), Assistant Professor,
P.M. Kuznetsov1, Dr. Sci. (Eng.), Professor, e-mail: profpol@rambler.ru,
L.L. Khoroshko1, Cand. Sci. (Eng.), Assistant Professor, Head of Chair,
1 Moscow Aviation Institute (National Research University), 125993 Moscow, Russia.

 

For contacts:

P.M. Kuznetsov, e-mail: profpol@rambler.ru.

Bibliography:

1. Akashev Z. T. Methodology of improving and selecting structure of process flow charts in mines. Tyazheloe mashinostroenie. 2005, no 12, pp. 17—19. [In Russ].

2. Yeleneva J. Y., Kharin A. A., Yelenev K. S., Andreev V. N., Kharina O. S., Kruchkova E. V. Corporate knowledge management in Ramp-up conditions: the stakeholder interests account, the responsibility centers allocation. CIRP Journal of Manufacturing Science and Technology. 2018. Vol. 20. Pp. 207—216.

3. Andreev V. N., Eleneva Yu.A., Eleneva Yu.Ya. Tekhnologicheskiy kapital promyshlennogo predpriyatiya: struktura, effektivnost' ispol'zovaniya. Monografiya [Technological capital of an industrial plant: structure and utilization efficiency. Monograph], Moscow, MGTU «Stankin», 2012, 78 p.

4. Martinov G. M., Kozak N. V. Numerical control of large precision machining centers by the AxiOMA contol system. Russian Engineering Research. 2015. Vol. 35. No 7. Pp. 534—538.

5. Ginette Wei Get Tseng Digital twin feed drive identification for virtual process planning. University of Waterloo, 2018. P. 89.

6. Kuznetsov P. M., Tsyrkov G. A. Purposeful environment of project operational management. Informatsionnye tekhnologii v proektirovanii i proizvodstve. 2017, no 4, pp. 10—14. [In Russ].

7. Tsyrkov A. V., Kuznetsov P. M., Tsyrkov G. A., Ermokhin E. A., Moskvin V. K. Project operational management in the machine building industry. Vestnik Mordovskogo universiteta. 2018. Vol. 28, no 4, pp. 511—522. [In Russ].

8. Borzenkov V. V. Topological properties of macro-elements describing structure of parts in computer-aided design of process flow charts in machine work. Sotrudnichestvo v oblasti mashinostroitel'nykh proizvodstv, reinzhiniringa i obrazovaniya. Sbornik materialov nauchnoprakticheskoy konferentsii s mezhdunarodnym uchastiem [Cooperation in the field of mechanical engineering, reengineering and education. Collection of materials of a scientific and practical conference with international participation], Smolensk, 2013, pp. 18—21. [In Russ].

9. Maksimovskii D. E. Automation of process design by design-technological parameterization. Russian Engineering Research. 2011. Vol. 31. No 9. Pp. 870—872. DOI: 10.3103/ S1068798X1109019X.

10. Kalyakulin S. Y., Kuz’min V. V., Mitin E. V., Sul’din S. P. Informational relational models for calculating the cutting conditions in automatic control systems. Russian Engineering Research. 2018. Vol. 38. No 12. Pp. 1049—1052. DOI: 10.3103/S1068798X18120250.

11. Kalyakulin S. Yu., Kuz'min V. V., Mitin E. V. Designing of structure of process flow carts based on synthesis. Vestnik Mordovskogo universiteta. 2018. Vol. 28, no 1, pp. 77—84. [In Russ].

12. Astapov V.Yu., Khoroshko L. L., Afshari Payam, Khoroshko A. L. Computer-aided design in modeling modes of process flow charts in manufacturing of aircraft components. Trudy MAI. 2016, no 87, pp. 7. [In Russ].

13. Stephenson D. A., Agapiou J. S. Metal cutting theory and practice. Third edition. CRC Press. London—N.Y.: Taylor & Francis Group, 2016. 932 p.

14. Bernd X. Weis. From ilea to innovation. A handbook for inventors, decision makers and organizations. Springer-Verlag Berlin: Heidelberg. 2015. 262 p.

15. Kuznetsov P. M., Khoroshko L. L. Digitization of crushing and milling equipment reconditioning. MIAB. Mining Inf. Anal. Bull. 2019;(10):195-205. [In Russ]. DOI: 10.25018/02361493-2019-10-0-195-205.

16. Butko A. O., Briukhovetskii A. P., Grigoriev D. E., Kalashnikov K. S. Algorithms, mechanisms and procedures for the computer-aided project generation system. International Journal of Applied Engineering Research. 2017. Vol. 12, No 24. Pp. 14199—14207.

17. Butko A. O., Kolesnikov D. A. Algorithms of project development automation subsystem within the integrated analysis of administration and engineering solutions. Informatsionnye tekhnologii v proektirovanii i proizvodstve. 2018, no 3(171), pp. 3—9. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.