Wastes from coal mining and processing. Methodological approaches to the assessment of their ecological safety and directions for use. Part 1. Characterization of solid wastes from coal mining and processing in foreign countries

It is shown that the legal basis for assessing pollutants in solid wastes from coal mining and processing in foreign countries is the documents establishing the classification of waste, waste management rules, assessment of their environmental impact, as well as the best available techniques for reduction of the negative impact of waste on the environment. The main environmentally significant characteristics of coal mining and processing waste, which are taken into account when assessing their environmental impact, are indicators that reflect the risks of acidic water formation and the mobility of macro- and microelements in rocks composition. A review is presented on the methods and approaches used in foreign countries for the characterization of wastes, including the assessment of their chemical composition, mobility of metals in rocks, and the ability to generate acids.

Keywords: coal mining and processing wastes, environmental impact, best available techniques, analysis methods.
For citation:

Silyutin S.A., Epshtein S.A. Wastes from coal mining and processing. Methodological approaches to the assessment of their ecological safety and directions for use. Part 1. Characterization of solid wastes from coal mining and processing in foreign countries. MIAB. Mining Inf. Anal. Bull. 2020;(4):5-19. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-5-19.

Acknowledgements:
Issue number: 4
Year: 2020
Page number: 5-19
ISBN: 0236-1493
UDK: 658.567.1:622.33:504.064
DOI: 10.25018/0236-1493-2020-4-0-5-19
Article receipt date: 27.01.2020
Date of review receipt: 21.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

S.A. Silyutin, Cand. Sci. (Eng.), JSC Siberian Coal and Energy Company (SUEK), Moscow, Russia, e-mail: silutinsa@suek.ru,
S.A. Epshtein, Dr. Sci. (Eng.), Head of Scientific and Educational Testing Laboratory «Physics and Chemistry of Coals», National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: apshtein@yandex.ru.

For contacts:

I.O. Familia, e-mail: apshtein@yandex.ru.

Bibliography:
  1. Federal'naya sluzhba gosudarstvennoy statistiki [Federal State Statistics Service]. URL: https://www.gks.ru/search?q=%D0%BE%D1%82%D1%85%D0%BE%D0%B4%D1%8B+%D 0%B4%D0%BE%D0%B1%D1%8B%D1%87%D0%B8.
  2. ITS 37-2017 Dobycha i obogashchenie uglya. Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam [ITS 37-2017 Mining and preparation of coal. Information and technical reference for the best available techniques], Moscow, Byuro NDT, 2017, 301 p.
  3. BREF. Reference document on best techniques for the management of tailings and wasterock in mining activities. European Commission. 2009. 557 p. URL: http://ec.europa.eu/environment/waste/mining/bat.htm.
  4. Pitard F. F. Pierre Gy’s sampling theory and sampling practice: heterogeneity, sampling correctness, and statistical process control. CRC Press, 1993. 488 p.
  5. Brooks B. W., Peters T. H., Winch J. E. Manual of methods used in the revegetation of reactive sulphide tailings basins. MEND Report 2.24.1. MEND 1989. 208 p.
  6. Runnels D. D., Shields M. J., Jones R. L. Methodology for adequacy of sampling of mill tailings and mine waste rock. Proceedings of Tailings and Mine Waste 97. Rotterdam: Balkema, pp. 561—563.
  7. Bucknam C. H. Personal communication with Charles Bucknam regarding NMS Analytical Methods Book. Newmont Metallurgical Services. cbuc4430@corp.newmont.com. 303/7084430. June 14, 1999.
  8. Hammack R. W. Evolved-gas analysis. A method for determining pyrite, marcasite, and alkaline-earth carbonates. Environmental Geochemistry of Sulfide Oxidation, Alpers, C., Blowes D. eds. Chapter 28. ACS Symposium Series 550, American Chemical Society, Washington, D. C., 1994. pp. 431—444.
  9. Lapakko K.A., White W. W. Modification of the ASTM 5744—96 Kinetic Test. Proceedings of the Fifth International Conference on Acid Rock Drainage, 2000. SM E, Littleton, CO. pp. 631—639.
  10. Tessier A., Campbell P. G. C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979. Vol. 51, No 7. pp. 844–851.
  11. Leinz R. W., Sutley S. J., Desborough G.A., Briggs P. H. An investigation of the partitioning of metals in mine wastes using sequential extractions. Proceedings of the fifth International Conference on Acid Rock Drainage. (ICARD, Denver, 2000). Society for Mining, Metallurgy and Exploration, 2000. pp. 1489–1499.
  12. Dold B., Fontbote L. Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. Journal of Geochemichal Exploration, 2001. Vol. 74. pp. 3–55. DOI: 10.1016/S0375-6742(01)00174-1.
  13. Sobek A., Schuller W., Freeman J., Smith R. Field and laboratory methods applicable to overburdens and minesoils. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/2-78/054 (NTIS PB280495), 1978.
  14. Duncan D., Bruynesteyn A. Determination of acid production potential of waste materials. Metallurgy Society, AIME, 1979. paper A-79—29.
  15. Coastech Research Inc. Investigation of prediction techniques for acid mine drainage. MEND Project 1.16.1a. Canada Center for Mineral and Energy Technology, Energy, Mines, and Resources Canada. 1989. 61 p.
  16. Miller S., Robertson A., Donahue T. Advances in acid drainage prediction using the net acid generation (NAG) test. Proceedings 4th international conference on acid rock drainage, Vancouver, BC, 1997. pp. 533–549
  17. Lawrence R. W., Wang Y. Determination of neutralization potential in the prediction of acid rock drainage. Proceedings of 4th International Conference on Acid Rock Drainage, Vancouver, BC, 1997 pp. 449–464.
  18. Lapakko K.A. Evaluation of neutralization potential determinations for metal mine waste and a proposed alternative. Journal American Society of Mining and Reclamation, 1994. Vol. 1994, No 1. Pp. 129–137. DOI: 10.21000/JASMR94010129.
  19. Skousen J., Renton J., Brown H., Evans P., Leavitt B., Brady K., Cohen L., Ziemkiewicz P. Neutralization Potential of Overburden Samples Containing Siderite. Journal of Environment Quality, 1997. Vol. 26, No 3. P. 673. DOI: 10.2134/jeq1997.00472425002600030012x.
  20. Price W.A. Draft guidelines and recommended methods for the prediction of metal leaching and acid rock drainage at minesites in British Columbia. B.C. Ministry of Employment and Investment, 1998, 88 p.
  21. Bradham W. S., Caruccio F. T. A comparative study of tailings analysis using acid/base accounting, cells, columns and soxhelets. Proceeding of the 1990 Mining and Reclamation Conference and Exhibition, Charleston, WV, April 23—26, 1990. pp. 19—25.
  22. Sand W., Jozsa P-G, Kovacs Z. M. Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. Journal of Geochemical Exploration, 2007. Vol. 92, Iss. 2–3, pp. 205—211.
  23. Zhuravleva N. V., Ivanykina O. V., Ismagilov Z. R. The content of toxic elements in overburden and enclosing rocks of coal deposits of the Kemerovo region.Gornyy informatsionnoanaliticheskiy byulleten’. 2015, no 3, pp. 187—196. [In Russ].
  24. Shpirt M.Ya., Artem'ev V.B., Silyutin S.A. Ispol'zovanie tverdykh otkhodov dobychi i pererabotki ugley [Use of solid waste of production and processing of coals], Moscow, Gornoe delo OOO «Kimmeriyskiy tsentr», 2013, 432 p.
  25. Nifantov B. F., Artemyev V. B., Yasyuchenya S. V., Anferov B.A., Kuznetsova L. V. Geokhimicheskoe i geotekhnologicheskoe obosnovanie novykh napravleniy osvoeniya ugol'nykh mestorozhdeniy Kuzbassa. T. 1. Geologiya [Geochemical and geotechnological substantiation of new directions for the development of coal deposits in Kuzbass. Vol. 1. Geology], Moscow, Gornoe delo OOO «Kimmeriyskiy tsentr», 2014, 536 p.
  26. Silyutin S.A., Shpirt M.Y., Lavrinenko A.A. Classification of solid fossil fuels and their processing products depending on trace elements contained in them. Solid Fuel Chemistry. 2016, Vol. 3, pp. 141—148. DOI: 10.10.3103/S0361521916030113.
  27. Jones K. B., Ruppert L. F. Leaching of trace elements from Pittsburgh coal mill rejects compared with coal combustion products from a coal-fired power plant in Ohio, USA . International Journal of Coal Geology. 2017. Vol. 171. Pp. 130—141 DOI: 10.1016/j.coal.2017.01.002.
  28. Letina D., Letshwenyo W. M. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies. Physics and Chemistry of the Earth, Parts A/B/C. 2018. Vol. 105. Pp. 184—190. DOI: 10.1016/j.pce.2018.02.013.
  29. Orndorff Z. W., Daniels W. L., Zipper C. E., Eick M., Beck M. A column evaluation of Appalachian coal mine spoils' temporal leaching behavior. Environmental Pollution, 2015. Vol. 204. Pp. 39—47. DOI: 10.1016/j.envpol.2015.03.049.
  30. Qureshi A., Maurice C., Öhlander B. Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 2016. Vol. 160. Pp. 44—54. DOI: 10.1016/j. gexplo.2015.10.014.
  31. Haywood L. C., de Wet B., de Lange W., Oelofse S. Legislative challenges hindering mine waste being reused and repurposed in South Africa. The Extractive Industries and Society, 2019. Vol. 6. No. 4. Pp. 1079—1085. DOI: 10.1016/j.exis.2019.10.008.
Subscribe for our dispatch