Petrophysical capabilities of crosswell profiling with common depth point

Common depth point seismics in water-filled wells using a sparker and a multichannel array is used to detect and locate linear vertical objects. This approach rests upon comprehensive examination of all available data on geology and geophysics of enclosing rock mass. The wave field recorded in CDP profiling contains P-waves and the Lamb–Stonely waves propagating along the well axis. It is possible to study these waves using acoustic well logging. In this case, the results will be the velocity curves of P-waves and hydrowaves, as well as traces of reflected waves of both types. A major advantage of the approach is the array enabling multiple and multichannel recording. Such array is equivalent to multichannel well logging. It enhances accuracy of velocity estimation from time–travel plots owing to statistical effect and increases intensity of reflected waves thanks to stacking summation. The frequencies of the velocity characteristic determination can be 20–40, while stacking folds of reflected P-waves and hydrowaves are more than 100 and more than 400, respectively. The results can be used both as an independent tool for geologic cross-section differentiation and as a parameter database for downhole and land seismic surveys with common depth point.

Keywords: borehole seismics, acoustic logging, Lamb–Stonely wave, crosswell profiling, multichannel acoustic logging tool, reflected wave trace.
For citation:

Chugaev A. V., Sanfirov I. A., Tomilov K. Yu. Petrophysical capabilities of crosswell profiling with common depth point. MIAB. Mining Inf. Anal. Bull. 2020;(11):108-117. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-108-117.

Acknowledgements:
Issue number: 11
Year: 2020
Page number: 108-117
ISBN: 0236-1493
UDK: 550.832.4
DOI: 10.25018/0236-1493-2020-11-0-108-117
Article receipt date: 28.04.2020
Date of review receipt: 11.08.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

A.V. Chugaev1, Cand. Sci. (Eng.), Senior Researcher
I.A. Sanfirov1, Dr. Sci. (Eng.), Professor, Director,
K.Yu. Tomilov1, Engineer,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.V. Chugaev, e-mail: chugaev@mi-perm.ru.

Bibliography:

1. Sanfirov I. A., Chugaev A. V., Babkin A. I., Lisin V. P., Bobrov V. Y. Minetechnical applications of seismic in shallow wells. Russian Geophysics. 2018, no 5, pp. 24—30. [In Russ].

2. Chugaev A. V., Pugin A. V., Lisin V. P., Tarakanov S. A. Particular features of wave-field forming in the process of ice wall fencing study at the mine shaft by the borehole seismic methods. Tezisy dokladov 15-y mezhdunarodnoy nauchno-prakticheskoy konferentsii «Inzhenernaya i rudnaya geofizika—2019» [Conf. proc., Engineering and Mining Geophysics, 15th Conference and Exhibition, April 2019]. Gelendzhik, 2019. [In Russ]. DOI: 10.3997/22144609.201901721.

3. Sanfirov I.A., Yaroslavtsev A. G., Babkin A. I., Chugaev A. V. Patent RU 2706910 29.03.2019.

4. Yaroslavtsev A. G. Representation of an icewall fence of mine shafts in a seismic wavefield Gornoe ekho. 2019, no 3, pp. 52—57. [In Russ]. DOI: 10.7242/echo.2019.3.15.

5. Lamb H. On the velocity of sound in a tube, as affected by the elasticity of the walls. Memoirs and Proceedings of the Manchester literary and Philosophical Society. 1988. Vol. 42. No 9. Pp. 1—16.

6. Henriet J. P., Schittekat J., Heldens P. Borehole seismic profiling and tube wave applications in a dam site investigation. Geophysical Prospecting, 1983. No. 31, pp. 72—86.

7. White J. E. Vozbuzhdenie i rasprostranenie seysmicheskikh voln [Excitation and propagation of seismic waves], Moscow, Nedra, 1986, 261 p.

8. Vladov M. L., Kalinin A. V., Shalaeva N. V. The use of tube waves in the restoration of a velocity section of shear waves according to borehole tomography. Prospect and protection of mineral resources. 2002, no 1, pp. 46—48. [In Russ].

9. Oshkin A., Khusnullina G. Possibibilities and perspectives of seismoacoustic measurments of wells. Tekhnologii seismorazvedki, 2015, no 1, pp. 92—98. [In Russ].

10. Burago N. A., Ibatov A. S., Krauklis P. V., Krauklis L. A. Dispersion of tube and lamb waves recorded in acoustic logging. Interferentsionnye volny v sloistykh sredakh [Interference waves in layered media], Leningrad, Nauka, 1980, pp. 19—27.

11. Gorgun V. A, Utemov E. V., Kosarev V. E. The dispersion method for determining the interval velocity according to a multielement wave acoustic logging. Georesursy. 2011, no 6 (42), pp. 44—47. [In Russ].

12. Akhmetsafin R. D., Akhmetsafina R. Z. Dispersive semblance processing of borehole acoustic array data. Geofizicheskie issledovaniya. 2017. vol. 18, no 4, pp. 57—70. [In Russ].

13. Pimenova A. V., Belov S. V., Shumilov A. V. Using radon transform for wave selection in acoustic logging. Russian Geophysics. 2015, no 5, pp. 19—22. [In Russ].

14. Shi W., Wang X., Shi Y., Feng A., Zou Y., Young S. Application of dipole array acoustic logging in the evaluation of shale gas reservoirs. Energies, 2019. Vol. 12. No 20. Article 3882. DOI: 10.3390/en12203882.

15. Assous S., Elkington P. Shearlets and sparse representation for microresistivity borehole image inpainting. Geophysics. 2018. Vol. 83. Pp. 17—25. DOI: 10.1190/geo2017-0279.1

16. Li C., Yue W. High-resolution radon transforms for improved dipole acoustic imaging. Geophysical Prospecting. 2017. Vol. 65. Vol. 2. Pp. 467—484.

17. Alekseev R. I., Korovin Yu. I. Rukovodstvo po vychisleniyu i obrabotke rezul'tatov kolichestvennogo analiza [Guidelines for calculating and processing quantitative analysis results]. Moscow, Atomizdat, 1972, 72 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.