Production of carbon sorbents for metal recovery from metal salt solutions

The article discusses methods of chemical oxidation of various carbon-bearing materials (natural and artificial black lead and different rank fossil coals), in particular, the methods of Hammers and Hoffman. The authors offer a brief description of the procedure meant for preliminary treatment of carbon-bearing materials and their subsequent oxidation. The data on variation in the total content of functional oxygen-bearing groups after the oxidation and their sorption activity relative to cobalt ions (II) at different values of pH are presented. It is found that the total number of functional oxygen-bearing groups in the oxidized materials on the basis of fossil coals is much lower than in the materials of natural and artificial black leads. It is shown that adsorption capacity relative to cobalt is commensurable in the oxidized carbon materials and of black leads and coals at neutral pH. It is supposed that at pH = 10 it is possible that chemosorption at oxidized carbon materials can run simultaneously with formation of insoluble compounds of cobalt (oxides and hydroxides). The applicability of the test coals in production of carbon sorbents for extraction of cobalt ions form cobalt salt solutions at different pH is illustrated.

Keywords: сarbon sorbent, graphene oxide, graphene-like materials, sorption of metals, oxidation of carbon materials, Hammers method, Hoffman method, carbon material, cobalt sorption.
For citation:

Marinin S. D., Afrikyan G. T. Production of carbon sorbents for metal recovery from metal salt solutions. MIAB. Mining Inf. Anal. Bull. 2020;(4):33-43. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-33-43.

Acknowledgements:
Issue number: 4
Year: 2020
Page number: 33-43
ISBN: 0236-1493
UDK: 544.723.54
DOI: 10.25018/0236-1493-2020-4-0-33-43
Article receipt date: 20.01.2020
Date of review receipt: 21.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

S.D. Marinin, Graduate Student, e-mail: sergey_marinin@list.ru, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
G.T. Afrikyan, Process Engineer, e-mail: agaik153@mail.ru, Joint-Stock Company «Scientific Research Institute of Electrical Carbon Materials», Elecktrougli, Russia.

 

For contacts:

S.D. Marinin, e-mail: sergey_marinin@list.ru.

Bibliography:

1. Boehm H. P. Chemical identification of surface groups. Advances in catalysis and related subjects. 1966. Vol. 16. pp. 179–211.

2. Boehm H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994. Vol. 32. pp. 759—769.

3. Boehm H. P. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002. Vol. 40. pp. 145—149.

4. Savitskyi D. P., Makarov A. S., Goncharuk V. V. Preparation of a colloidal graphene oxide solution from natural coal. Dopovіdі Natsіonal'noy akademіi nauk Ukraini, 2016, no 6, pp. 87—93. URI: http://dspace.nbuv.gov.ua/handle/123456789/104782.

5. Marya Raji, Nadia Zari, Abou el Kacem Qaiss, Rachid Bouhfid Chemical preparation and functionalization techniques of graphene and graphene oxide. Functionalized graphene nanocomposites and their derivatives. Chapter 1. 2019, Elsevier, pp. 1—20. DOI: 10.1016/b9780-12-814548-7.00001-5.

6. Xiaolu Liu, Ran Ma, Xiangxue Wang Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution. A review. Environmental Pollution. 2019, Vol. 252, Part A, pp. 62—73.

7. London Metal Exchange: LME: https://www.lme.com/

8. Jacoby M. It’s time to get serious about recycling lithium-ion batteries. Chemical & Engineering News. 2019. Vol. 97, Issue 28.

9. Hua Zhu, Xuetao Xu, Xin Zhong Adsorption of Co(II) on graphene oxides. Polish Journal of Environmental Studies. 2016. Vol. 25. No 6, pp. 2675—2682. DOI: 10.15244/pjoes/63730.

10. Klimova K., Pumera M., Luxa J., Jankovsky O., Sedmidubsky D. Graphene oxide sorption capacity toward elements over the whole periodic table: a comparative study. The Journal of Physical Chemistry C. 2016. Vol. 120 (42), pp. 24203—24212.

11. Jankovsky O., Simek P., Szokolova K., Sedmidubsky D., Pumera M., Sofer Z. Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon. 2015. Vol. 89. pp. 121—129. DOI: 10.1016/j.carbon.2015.03.025.

12. Sitko R., Turek E., Zawisza B., Malicka E., Talik E., Heimann J., Gagor A. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions. 2013. Vol. 42 (16), pp. 5682—5689.

13. Wu W., Yang Y., Zhou H., Ye T., Huang Z., Liu R., Kuang Y. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water, Air, & Soil Pollution. 2013. Vol. 224, No 1.

14. Sofer Z., Lu Wang, Klimova K., Pumera M. Highly selective uptake of Ba2+ and Sr2+ ions by graphene oxide from mixtures of IIA elements. RSC Advances. 2014. Issue 51.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.