Enhanced energy efficiency in actuation and operation

Vibrating conveying machines are widely used in many branches of mining industry and other fields of activities. The actuation and operation of such machines, especially heavy type models or machines with several vibration exciters, require much electric energy, while the above resonance machines need support frames with sufficient margin of safety in order to overcome the resonance phase in the machine actuation and stopping. This study uses the mathematical model of dynamics of a vibrating conveying machine with three vibration exciters to analyze the influence exerted by the actuation sequence of the exciters and their successive disengagement on the vibration parameters of the machine. The mechanism of the conveying member is analyzed using the mathematical model of the vibrating machine dynamics and a lab-scale vibration stand. The model is based on the numerical solution of a system of differential equations describing dynamics of vibrating conveying machines with n unbalance vibration exciters. The dependence of the maximum amplitudes of resonance vibrations on the actuation sequence of vibration exciters is obtained, the actuation conditions to ensure the lowest amplitudes are determined, and the vibrating machine parameters such that the cut-off of some vibration exciters results in no cessation of their rotation are found. The studies show that definite sequence of actuation of vibration exciters allows reducing maximum amplitudes of resonance vibrations of the machine. The conditions are determined for cutting-off some vibration exciter of a vibrating machine in the steady run without cessation of their rotation. The obtained results allow enhancement of energy efficiency of vibrating conveying machines.

Keywords: vibrating conveying machines, self-synchronization, vibration exciter, energy efficiency, optimization, mathematical model, vibration stand.
For citation:

Shikhov А. М., Rumyantsev S.A., Azarov E. B. Enhanced energy efficiency in actuation and operation. MIAB. Mining Inf. Anal. Bull. 2020;(4):137-145. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-137-145.

Issue number: 4
Year: 2020
Page number: 137-145
ISBN: 0236-1493
UDK: 621.313.13
DOI: 10.25018/0236-1493-2020-4-0-137-145
Article receipt date: 08.11.2019
Date of review receipt: 10.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

A.M. Shikhov1, Senior Lecturer, e-mail: usart@inbox.ru,
S.A. Rumyantsev1, Dr. Sci. (Eng.), Professor, e-mail: srumyantsev@usurt.ru,
E.B. Azarov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: eazarov@usurt.ru,
1 Ural State University of Railway Transport, 650034, Ekaterinburg, Russia. 

For contacts:

A.M. Shikhov, e-mail: usart@inbox.ru.


1. Vaysberg L.A., Korovnikov A. N., Baldaeva T. M. Innovational grating machines for construction material industry. Stroitel'nye materialy. 2017, no 7, pp. 52—55. [In Russ].

2. Dresig H., Fidlin A. Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Berlin, Heidelberg, 2014. 651 p.

3. Repin S. V., Litvin R.A., Mongush S. Ch. Theoretical and experimental study of the process of vibro-transportation of construction materials. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2016, no 3 (30), pp. 121—129. [In Russ].

4. Blekhman I. I., Sorokin V. S.: Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples. Nonlinear Dynamics. 2016. Vol. 83, No 4. рр. 2125—2141.

5. Shah K. P. Construction, working and maintenance of electric vibrators and vibrating screens. 2018. 70 p.

6. Blekhman I. I., Blekhman L. I., Yaroshevich N. P. On dynamics of drive vibrating machines with inertial-exciters. Obogashchenie rud. 2017, no 4 (370), pp. 49—53. [In Russ].

7. Yaroshevich N. P., Zabrodets I. P., Yaroshevich T. S. Dynamics of starting of vibrating machines with unbalanced vibroexciters on solid body with flat vibrations. Applied Mechanics and Materials. 2016. Vol. 849. p. 36.

8. Kremer E. B. Slow motion in systems with modulated excitation. Journal of Sound and Vibration. 2016. Vol. 383. P. 295–308.

9. Kosolapov A. N. Adaptive feature of vibrating machines with self-synchronous vibration exciters. Izvestiya vuzov. Gornyi Zhurnal. 1989, no 11. [In Russ].

10. Blekhman I. I., Blekhman L. I., Vaysberg L.A., Vasil'kov V. B. Energy consumption in vibrating transport-technological machines. Obogashchenie rud. 2019, no 1, pp. 18—27. [In Russ].

11. Rumyantsev S.A., Tarasov D.Yu., Shikhov A. M. Peculiar features of dynamics of vibrotransportation machines with three independently rotating vibration exciters. Transport Urala. 2010, no 3(26), pp. 47—50. [In Russ].

12. Rumyantsev S.A., Shikhov A. M. Mathematical model of single-mass vibro-transportation machine with three unbalanced vibration exciters as an integral electromechanical system «vibrating machine — asynchronous engines». Vestnik Ural'skogo gosudarstvennogo universiteta putey soobshcheniya. 2011, no 2(10), pp. 13—17. [In Russ].

13. Vaysberg L.A., Ivanov K. S., Mel'nikov A. E. Improvement of approaches for mathematical modeling of vibration grating process. Obogashchenie rud. 2013, no 2, pp. 22—27. [In Russ].

14. Blekhman I. I. Vibratsionnaya mekhanika i vibratsionnaya reologiya (teoriya i prilozheniya) [Vibration mechanics and vibration rheology (theory and practical application)], Moscow, Fizmatlit, 2018, 752 p.

15. Dentsov N. N. Dynamics of vibration grating process on multiple combinatorial parametric resonance. Fundamental'nye issledovaniya. 2015, no 4, pp. 55—60. [In Russ].

16. Azarov E. B., Rumyantsev S.A., Shikhov A. M. Vibration testing stand for oscillatory system dynamics research. Transport Urala. 2014, no 4, pp. 3—7. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.