Increasing validity of geoinformation support in mining waste management

Distribution of useful component in mining waste depends on dirt rock portion to be dumped, sequence of layering and unpredictable segregation in cluster zones by fraction composition and content of the useful component. It is of the prime importance to learn to predict quality characteristics in the whole volume of a man-made mineral deposit using discrete data from separate sampling points. Validity of the results depends on distribution of useful component in a natural deposit, exploration pattern parameters assumed in the man-made deposit survey, volume and geometry of samples as well as on technological factors. An efficient approach to the analysis of properties of a geological object is using geostatistics, which, with additional characteristics involved, allows identifying regular and random components of variability and predicting internal structure by means of detection of autocorrelations between separate samples in the preset directions. The algorithm is developed and validated for modeling distribution of useful component in a man-made deposit, including geometry of sampling arrangement, regular mesh parameters, correlation interval of geodata in each preset profile, number of geological samples in the connectivity interval and root-mean-square error per profile, to form a blocky model of a man-made deposit.

 

Acknowledgements:
For citation:

Alenichev V. M., Alenichev M. V. Increasing validity of geoinformation support in mining waste management. MIAB. Mining Inf. Anal. Bull. 2019;(11):172-179. [In Russ]. DOI: 10.25018/02361493-2019-11-0-172-179.

Issue number: 11
Year: 2019
Page number: 172-179
ISBN: 0236-1493
UDK: 622.271.45:519.72
DOI: 10.25018/0236-1493-2019-11-0-172-179
Authors: Alenichev V. M., Alenichev M. V.
About authors:

A.N. Khat’kova1, Dr. Sci. (Eng.), Professor,
Vice-Rector for Research and Innovation, e-mail: Alisa1965.65@mail.ru,
L.G. Nikitina1, Cand. Sci. (Eng.), Assistant Professor, Deputy Dean
for Educational Activities of the Mining Faculty, e-mail: nikitina-lg@mail.ru,
S.A. Pateyuk1, Graduate Student, e-mail: nesvvik@gmail.com,
1 Transbaikal State University, 672039, Chita, Russia.

Keywords: Validity, geoinformation support, man-mad mineral deposit, discrete geological data, prediction, regular mesh, geodata correlation, profile , blocky model of man-made mineral deposit.
Bibliography:

1. Zagibalov A. V. Substantiation of the principles of modeling the spatial concentration of gold in placer deposits. Marksheyderiya i nedropol'zovanie. 2010, no 3 (47), pp. 57—60. [In Russ].
2. Trubetskoy K. N., Galchenko Yu. P., Sabyanin G. V. Evaluation methodology for structural complexity of ore have been discovered in deposits as the object of development. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 6, pp. 75—86. [In Russ].
3. Kochergin A. M. Cost is the universal criterion of evaluation of reserves in the construction of modern na-tional classification of reserves. Nedropol'zovanie XXI vek. 2015, no 5 (55), pp. 146—155. [In Russ].
4. Alenichev V. M. Sukhanov V. I., Khokhryakov V. S. Modelirovanie prirodno-syr'evykh tekhnologicheskikh kompleksov (gornoe proizvodstvo) [Modeling of natural-raw technological complexes (mining) ], Ekaterinburg, UrO RAN, 1998, 165 p.
5. Kornilkov S. V., Alenichev V. M., Laptev Yu. V., Yakovlev A. M. Forecast of quality indicators of extracted raw materials on the basis of geoinformation technologies. Gornyy zhurnal. 2017, no 12, pp. 10—15. [In Russ].
6. Msrk Altaweel. GIS and Underground Mining. GIS Industry. July 1, 2016.
7. Devis Dzh. S. Statisticheskiy analiz dannykh v geologii: Per. s angl. V 2-kh kn. Pod red. D. A. Rodionova [Statistical analysis of data in Geology: English–Russian translation. In 2 books. Rodionov D. A. (Ed.)], Moscow, Nedra, 1990, book 1, 319 p.; book 2, 427 p.
8. Materon Zh. Osnovy prikladnoy geostatistiki. Per. s frants. [Fundamentals of applied geostatistics. English–Franch translation], Moscow, 1960, 408 p.
9. Armstron M. Basic linear geostatistics. Berlin, Heidelberg. New York: Springer, 1998. 149 р.
10. Alenichev V. M., Alenichev M. V., Umanskiy A. B. Account the spatial context of GEODATA models Rossy-Pei. Nedropol'zovanie XXI vek. 2015, no 2 (52), pp. 24—31. [In Russ].
11. Moridi Mohammad Ali, Youhei Kawamura, Mostafa Sharifzadeh, Emmanuel Knox Chanda, Markus Wagner, Hyongdoo Jang, Hirokazu Okawa. Development of Underground Mine Monitoring and Communication System Integrated ZigBee and GIS. International Journal of Mining Science and Technology. 2015, 25 (5). Pp. 811—818.
12. Khalil A., Hanich L., Hakkou R., Lepage Michel. GIS-based environmental database for assessing the mine pollution : a case study of an abandoned mine site in Morocco. Journal of Geochemical Exploration. 2014, 144 (SI), Pp. 468—477.
13. Морозов Ю. П. Analysis of gravity separation of minerals in cramped driving conditions. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2011, no 4, pp. 93—98. [In Russ].
14. Jakub Sisak. The Impact of GIS in Mine Development / GISP. 14 2017, April 12.
15. Oy Leuangthong, K. Daniel Khan, Clayton V. Deutsc. Solved Problems in Geostatistics. Wiley, 2008. 208 p.
16. Monestiez Pascal, Allard Denis, Froidevaux Roland. GeoENV III — Geostatistics for Environmental Applications. New York: Springer, 2001. 555 p.

Subscribe for our dispatch