Enhancement of confined blasting of ore

Underground mining of ore deposits features worsening of geological and geotechnical conditions, exclusive standards of environmental protection and subsoil conservation as well as more stringent requirements of life safety in the influence zones of mining. This study focuses on higher efficiency of confined blasting through justification of blast design with regard to a required grain-size composition of broken ore (average linear size of ore particle after confined blasting) and safety of guarded objects in terms of industrial and residential infrastructure in the influence zone of mining (the Ingul River underflow, domestic buildings and social framework objects in the settlement of Kizelgur in the suburb of the Kropyvnytskyi city, Ukraine, etc.). The study used analytical, mathematical, in-mine, laboratory and experimental research methods, mathematical and physical modeling, as well as the analysis and assessment of the confined blasting technologies, implementation analysis of pilot confined blasting at the preset grain-size composition, and the analysis of geological and geomechanical conditions on Level 280–210 m in the Michurin deposit (Ukraine) by standard and new procedures (developed with participation of the present article authors). The novelty of this study is justification of the ratio of fragmentation by confined blasting as 1.2–1.3. The fragmentation ratio is one of the main parameters in calculation of length of a section composed of layers (rows). After confined blasting in such section, fragmentation is limiting and equals on average 3.0 kg/m3 at rock hardness of 12–18 and more on Protodyakonov’s scale. As a result of the implemented research, a seismically safe confined blasting technology was developed to be applied in extraction of ore bodies 1, 4, 5 and 10, as well as residual reserves on level 280–210 m of the Michurin deposit. The ecological and social efficiency of the engineering solutions is evaluated.

 

Acknowledgements:
For citation:

Lyashenko V. I., Khomenko O. E. Enhancement of confined blasting of ore. MIAB. Mining Inf. Anal. Bull. 2019;(11):59-72. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-59-72.

 

Issue number: 11
Year: 2019
Page number: 59-72
ISBN: 0236-1493
UDK: 622. 831: 550. 543
DOI: 10.25018/0236-1493-2019-11-0-59-72
Authors: Lyashenko V. I., Khomenko O. E.
About authors:

V. I. Lyashenko, Cand. Sci. (Eng.), Head of Research Department, SE «UkrNIPIIPromtehnologii», 52204, Zheltye Vody, Ukraine,

e-mail: ipt@iptzw.dp.ua, vilyashenko2017@gmail.com,

O. E. Khomenko, Dr. Sci. (Eng.), Professor,

National Technical University «Dnipro Polytechnic», 49005, Dnepr, Ukraine, e-mail: rudana.in.ua@gmail.com.

 

Keywords: Underground mining, ore deposits, blasting, confined blasting, ratio of fragmentation, efficiency.
Bibliography:

1. Kelly B. Stress analysis for boreholes on department of defense lands in the western united states: a study in stress heterogeneity. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University. Stanford: Stanford University, 2013. Pp. 139—150.
2. Polak C. International Symposium on 23—27 June 2014 Vienna, Austria Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. International Atomic Energy Agency. Vienna, 2014. Pp. 8—9. URL: http://www-pub.iaea.org/iaeameetings/46085/ (accessed: 19.08.2016).
3. Techno-economic Comparison of Geological Disposal of Сarbon Dioxide and Radioactive Waste. Marketing and Sales Unit, Publishing Section International Atomic Energy Agency. Vienna, 2014. Pp. 246. URL: http://www.iaea.org/books (accessed: 19.08.2016).
4. Reiter K., Heidbach O. 3—D geomechanical—numerical model of the contemporary crustal stress state in the Alberta Basin (Canada). Solid Earth. 2014. No. 5. Pp. 1123—1149.
5. Safonov O. P., Shkreba O. P. Veroyatnostnyy metod otsenki seysmicheskogo effekta promyshlennykh vzryvov [Probabilistic method for estimating the seismic effect of industrial explosions], Moscow, Nedra, 1970, 56 p.
6. Shashurin S. P., Plaksa N. V., Lebedev A. P. Razrabotka moshchnykh rudnykh mestorozhdeniy sistemami s odnostadiynoy vyemkoy [Development of powerful ore deposits with one-stage recessed systems], Moscow, Nedra, 1971, 201 p.
7. Mosinets V. N. Drobyashchee i seysmicheskoe deystvie vzryva v gornykh porodakh [Development of powerful ore deposits with one-stage recessed systems], Moscow, Nedra, 1976, 271 p.
8. Tseytlin Ya. I., Smoliy N. I. Seysmicheskie i udarnye vozdushnye volny promyshlennykh vzryvov [Seismic and shock air waves of industrial explosions], Moscow, Nedra, 1981, 192 p.
9. Bogatskiy V. F., Fridman A. G. Okhrana sooruzheniy i okruzhayushchey sredy ot vrednogo deystviya promyshlennykh vzryvov [Protection of structures and the environment from harmful effects of industrial explosions], Moscow, Nedra, 1982, 162 p.
10. Mosinets V. N., Abramov A. V. Razrushenie treshchinovatykh i narushennykh porod [Destruction of fractured and broken rocks], Moscow, Nedra, 1982, 248 p.
11. Khomenko O., Tsendjav L., Kononenko M., Janchiv B. Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining of Mineral Deposits, 2017. No 11(4), Pp. 86—95. DOI: 10.15407/mining11.04.086.
12. Sleptsov M. N., Azimov R. Sh., Mosinets V. N. Podzemnaya razrabotka mestorozhdeniy tsvetnykh i redkikh metallov [Underground mining of nonferrous and rare metals], Moscow, Nedra, 1986, 206 p.
13. Khomenko O., Kononenko M., Danylchenko M. Modeling of bearing massif condition during chamber mining of ore deposits. Mining of Mineral Deposits, 2016. 10(2), Pp. 40—47. DOI: 10.15407/mining10.02.040.
14. Dobycha i pererabotka uranovykh rud v Ukraine. Monograph. Pod obshch. red. A.P. Chernova [Mining and processing of uranium ores. Chernov A.P. (Ed.)], Kiev, ADEF—Ukraina, 2001, 238 p.
15. Zhanchiv B., Rudakov D., Khomenko O., Tsendzhav L. Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2013. (4), Pp. 10—18.
16. Savel'ev Yu. Ya., Nedel'skiy A. G., Kruk P. T., Dudchenko A. Kh., Tkachenko A. A. Organization of monitoring of the seismic action of an explosion during the exploration of ore deposits under urban development. Part 2. Naukoviy vіsnik NGU. 2004, no 1, pp. 5—7.
17. Kutuzov B. N., Belin V. A. Proektirovanie i organizatsiya vzryvnykh rabot [Проектирование и организация взрывных работ], Moscow, MGGU, 2011, 410 p.
18. Sivenkov V. I., Ilyakhin S. V., Maslov I. Yu. Emul'sionnye vzryvchatye veshchestva i neelektricheskie sistemy initsiirovaniya [Emulsion explosives and non-electrical initiation systems], Moscow, Shchit-M, 2013, 320 p.
19. Trubetskoy K. N. Razvitie resursosberegayushchikh i resursovosproizvodyashchikh geotekhnologiy kompleksnogo osvoeniya mestorozhdeniy poleznykh iskopaemykh [Development of resource-saving and resource-generating geotechnologies of integrated development of mineral deposits], Moscow, IPKON RAN, 2014, 196 p.
20. Jonson D. Controlled shock waves and vibrations during large and intensive blasting operations under Stockholm city. Workshop on Tunneling by Drilling and Blasting hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012. Pp. 49—58.
21. Monalas F. I., Arusu T. Blasting works in urban area A Singapore case study. Workshop on Tunneling by Drilling and Blasting hosted by the 10th Int. Symp. On Fragmentation due to Blasting (Fragblast 10), New Delhi, India, 24—25 November, 2012, Pp. 23—30.
22. Gupta I. D., Trapathy G. R. Comparison of construction and mining blast with specific reference to structural safety. Indian Mining and Engineering Journal. 2013. Vol. 54. No. 4. Pp. 13—17.
23. Lyashenko V., Vorob’ev A., Nebohin V., Vorob’ev K. Published by the National Mining University on behalf of Mining of Mineral Deposits. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (2018). Mining of Mineral Deposits, 12(1), 95—102 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
24. Rakishev B. R., Rakisheva Z. B., Auezova A. M. Velocity and time of expansion of the cylindrical explosive cavity in the rock mass. Vzryvnoe delo. 2014, no 111/68, pp. 3—17. [In Russ].
25. Il'yakhin S. V., Norov A. Yu., Yakshibaev T. M. Determination of the radius of zones of rock mass cracking during camouflage explosion. Vzryvnoe delo. 2016, no 116/73, pp. 29—36. [In Russ].
26. Komashchenko V. I., Vasil'ev P. V., Maslennikov S. A. Technologies of underground development of KMA deposits — a reliable raw material basis. Izvestiya Еul'skogo gosudarstvennogo universiteta. Nauki o Zemle. 2016, no 2, pp. 101—114. [In Russ].
27. Lyashenko V. I., Andreev B. N., Kucha P. M. Technologikal development of insitu block leaching of metals from hard ore. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 3, pp. 46—60. DOI: 10.25018/0236-1493-2018-3-0-46-60. [In Russ].
28. Lyashenko V. I., Andreev B. N. Improvement of the efficiency of drilling and blasting preparation of ore mass for the underground block leaching. Bezopasnost' truda v promyshlennosti. 2019, no 8, pp. 27—34. DOI: 10.24000/0409-2961-2019-8-27-34. [In Russ].
29. Borovkov Yu. A., Yakshibaev T. M. Theoretical studies of changes in fracture zones radius in the ore pile of heap leaching with camouflet blasthole charge explosion. Izvestiya vuzov. Gornyy zhurnal. 2019, no 5, pp. 30—36. DOI: 10.21440/0536-1028-2019-5-30-36. [In Russ]

Subscribe for our dispatch