Application of resource-saving principles at breaking of strong fractured ores by blasthole ring charges

During underground mining of deposits of valuable non-metallic raw materials, nonferrous and precious metal ores, the problem of their overgrinding as a result of blasting is quite acute. Overgrinding of valuable non-metallic raw materials leads to an actual decrease in the yield of concentrates or final products, due to the rather stringent requirements of the enrichment technology for the conditional size of the piece and the structural safety of the useful component. Non-ferrous and precious metal ores represented by strong rocks are characterized by the effect of increased concentration of ore minerals in small classes of ore. Due to the process of segregation on ore drawing, small fractions in significant quantities accumulate on the lying side of the goaf and its unevenness. Such ore with a high content of useful component requires additional technological measures for its extraction or is simply lost. Consequently, the development of technological methods for managing the quality of products of a mining enterprise and methods for increasing the completeness of extracting mineral resources are an urgent scientific and technical task. To solve it, an analysis of theory and practice in the study area was carried out, which showed that the existing methods for additional extraction of fine ore fractions in mining systems with an open goaf are laborintensive and resource-intensive, not universal, ineffective and often not safe. It is rational to create conditions for reducing the yield of fine fractions already at the stage of ore blasting As a result, determining parameters principles for breaking technology of strong fractured ores are proposed. Developed guidelines and recommendations for blasthole ring charges. Dependences the technical and economic indicators of ore explosive blasting from its structural and technological parameters are obtained.

Keywords: underground mining, overgrinding, strong ores, fracturing, breaking technology, dispersal, arcuate zone, charge system.
For citation:

Smirnov A.A., Baranovskiy K.V., Rozhkov A.A. Application of resource-saving principles at breaking of strong fractured ores by blasthole ring charges. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):300-312. [In Russ]. DOI: 10.25018/0236-1493-2020-31-0-300-312.


the Research was carried out within the framework of the state Task No. 075-00581-19-00. Theme № 0405-2019-0005.

Issue number: 3
Year: 2020
Page number: 300-312
ISBN: 0236-1493
UDK: 622.235
DOI: 10.25018/0236-1493-2020-31-0-300-312
Article receipt date: 21.11.2019
Date of review receipt: 28.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

Smirnov A.A.1, Cand. Sci. (Eng.), senior research worker of the laboratory of underground geotechnology, е-mail:,
Baranovskiy K.V.1, Cand. Sci. (Eng.), senior research worker of the laboratory of underground geotechnology,
Rozhkov A.A.1, Cand. Sci. (Eng.), research worker of the laboratory of underground geotechnology,
1 The Institute of Mining of the Ural branch of the Russian Academy of Sciences, 620075, Ekaterinburg, Russia.


For contacts:

1. Lomonosov G.G., Turtygina N.A. The phenomenon of ore segregation and its influence on the formation of the quality of mining products. MIAB. Mining Inf. Anal. Bull. 2014, no 6, pp. 37—40. [In Russ]

2. Laptev Ju. V. Mining factors determining the patterns of rock segregation during dumping of dumps. Markshejderija i nedropol’zovanie. 2007, no 1 (27), pp. 33—42. [In Russ]

3. Lomonosov G.G., Shangin S.S., Jusimov B.V. Increased recovery of small fractions of gold-bearing ores in underground mining of low-power deposits. MIAB. Mining Inf. Anal. Bull. 2013, no S27, pp. 12—18. [In Russ]

4. Turtygina N.A. Obosnovanie sistemy stabilizacii kachestva bednyh medno-nikelevyh rud pri podzemnoj dobyche [Justification of the stabilization system for the quality of poor copper-nickel ores in underground mining], Candidate’s thesis, Мoscow, MSMU, 2009, 23 p. [In Russ]

5. Glotov V.V., Pahaluev B.G. Optimization of the distance between the walls of the gutters during the hydrotreating of the extraction blocks. Vestnik Zabajkal’skogo gosudarstvennogo universiteta. 2016, no 4 (22), pp. 4—9. [In Russ]

6. Sitnikov R.V. Hydromechanical cleaning of ore fines is an effective way to reduce ore losses. Vestnik Chitinskogo gosudarstvennogo universiteta. 2010, no 2 (59), pp. 18—22. [In Russ]

7. Turchin M. Ju., Smirnov A.N., Sysoev V.I. The integrated use of magnesia raw materials, providing modern requirements for metallurgical units and the quality of the metal. Stal’. 2017, no 3, pp. 67—69. [In Russ]

8. Smirnov A.A., Rozhkov A.A. Effect Investigation of blasthole ring charges explosion. Vzryvnoe delo. 2018, no 119—76, pp. 118—128. [In Russ]

9. Skawina B., Greberg J., Salama A., Gustafson A. The effects of orepass loss on loading, hauling, and dumping operations and production rates in a sublevel caving mine. Journal of the Southern African Institute of Mining and Metallurgy, 2018, Vol. 118, pp. 409—418.

10. Yang R., Ding C., Yang L., Lei Z., Zhang Z., Wang Y. Visualizing the blastinduced stress wave and blasting gas action effects using digital image correlation. International Journal of Rock Mechanics and Mining Sciences, 2018, Vol. 112, pp. 47—54.

11. Gorinov S.A. The effectiveness of the use of flat charge systems for breaking highly fractured ores in underground conditions. Izvestia vuzov. Gornyj zhurnal. 1985, no 7, pp. 68—73. [In Russ]

12. Daneev A.V., Dambaev J.G., Kovalevsky V.N. Directed emergence of radial cracks in the explosion of related charges through their locations. JP Journal of Heat and Mass Transfer, 2017, T. 14., no 1. pp. 165—171.

13. Adushkin V.V., Kocharjan G.G., Brigadin I.V., Krasnov S.A. To the question of the mechanism of destruction of solid rock by an underground explosion. MIAB. Mining Inf. Anal. Bull. 2015, no 7, pp. 344—349. [In Russ]

14. Kalmykov V.N., Pergament V.H., Neugomonov S.S. Calculation of parameters for breaking fractured ores by borehole charges in mining systems with filling. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2009, no 1, pp. 22—24. [In Russ]

15. Yue Z., Tian S., Chen Z. Influence of the interval between holes on crack propagation in slit charge blasting. Chinese Journal of Rock Mechanics and Engineering, 2018, Vol. 37 (11), pp. 2460—2467.

16. Sokolov I.V., Smirnov A.A., Antipin Y.G., Rozhkov A.A. Physical modeling of highvalue quartz explosive breaking. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2017, no 1, pp. 4—9. [In Russ]

17. Savina L.N., Popyrin A.V. Calculation of the coefficients of mutual conjugacy of Pearson and Chuprov using Excel. Sbornik nauchnyh trudov SWorld. 2013, no 2, pp. 53—56. [In Russ]

18. Shevkun E.B., Leshhinskij A.V., Galim’janov A.A. Management of blasting crushing of rock by charges with air cavities. Gornyj zhurnal. 2016, no 2, pp. 66—69. [In Russ]

19. Rozhkov A.A. Issledovanie parametrov tehnologii vzryvnoj otbojki pri podzemnoj dobyche granulirovannogo kvarca [Investigation of explosive breaking technology parameters in underground mining of granular quartz], Candidate’s thesis, Ekaterinburg, USMU, 2019, 18 p. [In Russ]

20. Navarro J., Schunnesson H., Ghosh R., Segarra P., Johansson D., Sanchidrián J.Á. Application of drill-monitoring for chargeability assessment in sublevel caving. International Journal of Rock Mechanics and Mining Sciences, 2019, Vol. 119, P.180—192.

21. Kalmykov V.N., Strukov K.I., Konstantinov G.P., Kul’saitov R.V. Development of technology for re-mining of upper horizons of Kochkarsky gold ore deposit. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. 2016, no 3, pp. 13—20. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.