Processes of hydrosphere self-rehabilitation and mine water treatment in post mining period

The hydrosphere of catchments, which are disturbed by mining, is formed under the influence of not only natural, but also, to a large extent, man-made factors over a long period, sometimes tens or even hundreds of years. After the cessation of production, the return of the mining territory to a state as close to natural as possible is possible, as world experience shows, in exceptional cases, provided that the process of reclamation and revitalization is planned at the design stage of mining. In old industrial areas, the selfhealing processes of the hydrosphere are of great importance, which determine the time during which the territory should be considered as an object of accumulated environmental damage. At present, the total removal of metal compounds by mine waters in the discharge zones at flooded copper-ore mines of the Sverdlovsk region amounts to hundreds (manganese, zinc) and even thousands of tons per year (iron). The duration of self-rehabilitation of the hydrosphere of mining areas at the post-operational stage, i.e. the duration of the period during which the content of the main polluting components (copper, zinc, iron, sulfate ion) is reduced to the maximum permissible or background values, is tens or even hundreds of years. During this time, in order to prevent pollution of the underground and surface hydrosphere, expensive measures are required to implement a system of purification of underground and surface waters of the old industrial territory. The research was carried out on the basis of observations of the chemical composition of water bodies in the territory of the abandoned Levikhinsky mine since the beginning of the 2000s.

Keywords: ground and surface water, abandoned mines, flooding, active methods of purification, pollution, self-recovery.
For citation:

Ribnikova L.S., Ribnikov P.A. Processes of hydrosphere self-rehabilitation and mine water treatment in post mining period. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):488-500. [In Russ]. DOI: 10.25018/0236—1493—2020—31-0-488-500.

Acknowledgements:

the Research was carried out within the framework of the basic research Program of the Russian Academy of Sciences, theme 0328-2019-005 in accordance with the plan 2019-2021, and with the financial support of the RFBR in the framework of scientific project no.20-45-660014.

Issue number: 3
Year: 2020
Page number: 488-500
ISBN: 0236-1493
UDK: 556.502
DOI: 10.25018/0236—1493—2020—31-0-488-500
Article receipt date: 21.11.2019
Date of review receipt: 13.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

Ribnikova L.S.1, Dr. Sci. (Geol. Mineral.), chief researcher, the laboratory of mining ecology, luserib@mail.ru,
Ribnikov P.A.1,2, Cand. Sci. (Eng.), head of the laboratory of geoinformation and digital technologies in subsoil use, ribnikoff@yandex.ru,
1 Institute of Mining UB RAS, 620075, Russia, Ekaterinburg, Mamin-Sibiryakst., 58,
2 Ural State Mining University, 620144, Ekaterinburg , Kuybyshev st., 30.

 

For contacts:
Bibliography:

1. Rybnikova L.S., Rybnikov P.A. Hydrogeological research in mining at the postoperational stage. Geoecologija. Inzhenernaja geologija. Gidrogeologija. Geocriologija. 2018. no 4. pp. 25–39. [In Russ]

2. Abandoned mines and the water environment. Science Report. Environment Agency, Bristol, 2008. 40 p.

3. Wolkersdorfer C. Water management at abandoned flooded underground mines. Fundamentals. Tracer tests. Modelling. Water treatment. Springer, 2008. 465 p.

4. Gosudarstvenniy doklad «O sostojanii I ob okhrane okruzhajushchey sredi Sverdlovskoy oblasti v 2016 godu» State report «on the state and environmental protection of the Sverdlovsk region in 2016». Ekaterinburg: OOO «Tipographija Dlja Vas», 2017, 330 p. [In Russ]

5. Rybnikova L.S., Rybnikov P.A. Regularities of formation of underground water quality in the spent copper-coal mines of the Levikhinsky ore field (Middle Urals, Russia). Geokhimija. 2019. V. 64. no 3. pp. 282—299. (L.S. Rybnikova and P.A. Rybnikov. Regularities in the Evolution of Groundwater Quality at Abandoned Copper Sulfide Mines at the Levikha Ore Field, Central Urals, Russia. Geochemistry International, 2019, Vol. 57, no 3, pp. 298—313). [In Russ]

6. Nordstrom D.K., Bowell R.J., Campbell K.M., Alpers C.N. Challenges in Recovering Resources from Acid Mine Drainage. Mine Water and Circular Economy. IMWA 2017. Wolkersdorfer C., Sartz L, Sillanpää M., Häkkinen A. (Editors). Lappeenranta, Finland. 2017. pp. 595—602.

7. Normativi kachestva vodi vodnoh ob’ektov rybokhozijstvennogo znachenija, v tom chile normativi predel’no dopustimih concentracij vrednih veshzestv v vodnih ob’ektah rybokhozijstvennogo znachenija [Water quality Standards of water bodies of fisheries significance, including standards for maximum permissible concentrations of harmful substances in the waters of water bodies of fisheries significance]. Prilizhenije k prikazu Ministerstva sel’skogo hozajstva RF ot 13 dekabrja 2016 g. (s izmenenijami ot 12 oktjabrja 2018 g. [In Russ]

8. Orekhova N.N., Shadrunova I.V. Obrezovanije i kompleksnaja pererabotka prirodnotekhnogennih vod pri ekspluatatsiji medno-tsinkovokolchedannih mestorozhdenij [Formation and complex processing of natural and technogenic waters during the exploitation of copperzinc-silted deposits]. Magnitogorsk: Izd-vo Magnitogorsk. Gos. Tekhn. Un-ta im. G.I.Nosova, 2015. 185 p. [In Russ]

9. Khokhryakov A.V., Fadeichev A., Tseytlin E.M. Analysis of environmental issues of mining enterprises basing on integral environmental hazard index. Inzynieria Mineralna. Volume 15, Issue 1, January-June 2014. pp. 283—285. [In Russ]

10. Nodwell M., Kratochvil D. Sulphide precipitation and ion exchange technologies to treat acid mine drainage. ICARD 2012. 9 International Conference on Acid Rock Drainage, Ottawa, ON. 2012.

11. Kondrashkin A.V., Kuzovkov S.V. Rudnik I Rodnik. Technological approaches to the treatment of quarry and sub-basement waters in the production of non-ferrous metal ores. Inzhenernaja zashchita. 2015. no7. pp. 88—93. [In Russ]

12. Fifth Five-Year Review for Iron Mountain Mine Superfund Site Redding, California. US EPA. San Francisco. 2013. 252 p.

13. Kornilkov S.V., Antoninova N.Ju., Rybnikov P.A., Dmitrijev A.N. Tekhnologoecjnjmicheskije aspect perereabotki tekhnogenno-mineralnih obrazovanij gornorudnih predprijatij [Techno-economic aspects of processing of technogenic-mineral formations of mining enterprises]. Trudi Kogressa s mezhdunarodnim uchastijem I Konferenciji molodih uchenih «Fundamentalnije issledovanija I prikladnije razrabotki processov pererabotki I utilizaciji tekhnogennih obrazovanij». Ekaterinburg: UrO RAN, 2017. pp. 34—38. [In Russ]

14. Rybnikova L.S., Rybnikov P.A. Ecologicheskij ushcherb I ysennost gidrominerflnogo syrja v nedrah otrabotannih mednokolchedannih rudnikov Srednego Urala. Sergeevskije chtenija [Ecological damage and value of hydromineral raw materials in the subsoil of spent copper-coal mines of the Middle Urals]. Materiali godichnoj sessiji Nauchnogo covetaRAN po problemam geoecologiji, inzhenernoj geologiji i gidrogeologiji. Perm, 2019. pp. 527—532. [In Russ]

15. Kozin V.Z., Koltunov A.V., Morozov Ju.P., Osintsev V.A., Russkij V.V., Perestronin I.N., Tjurina G.L. Improving the technology for neutralizing mine waters of the Levikhinsky mine. Izv. VUZov. Gornij zhurnal. 1997. no 11–12. pp. 211–214. [In Russ]

Subscribe for our dispatch