Time-space problems in geoecology: An inter-disciplinary approach

Sustainable development under conditions of manmade transformation of the geoenvironment is impossible without rational use of natural resources. Abatement of the aggravating influence exerted by coal mine methane on the environment is one of the key problems in geoecology. Generally, the problems are inter-disciplinary, and methodological approaches to the solution of such problems enable extending the gained experience to the related fields of knowledge. For example, consideration of time-series data under the joint action of a number of factors. This property allows using the experience of the time-space problem solution by means of smoothing an incomplete sample of scattered experimental data (LOESS method) with subsequent interpolation of the obtained values using the nonparametric methods. As a result of the accomplished research, the surface of methane release dynamics in the in-mine drainage boreholes has been obtained. Its peculiarity consists in the estimability of the cycling parameter and wave amplitudes of methane dynamics at a distance from longwall face. The modeling takes into account the influence of forming overhangs on the nonlinear variations in concentrations of methane in undermined drainage boreholes. The use of the proposed approach in solving geoecological problems in hydrometeorology can allow identification of new space-time changes of wave heights versus synoptic periods and regional features of seas.

Keywords: methane release, wave climate, nonlinear dynamics, cycling, polynomial regression, in-situ gas drainage, tourist flow.
For citation:

Brigida V. S., Kozhiev Kh. Kh., Saryan A.A., Dzhioeva A. K. Time-space problems in geoecology: An inter-disciplinary approach. MIAB. Mining Inf. Anal. Bull. 2020;(4):2032. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-20-32.

Acknowledgements:
Issue number: 4
Year: 2020
Page number: 20-32
ISBN: 0236-1493
UDK: 504.61+502.52
DOI: 10.25018/0236-1493-2020-4-0-20-32
Article receipt date: 21.01.2020
Date of review receipt: 06.02.2020
Date of the editorial board′s decision on the article′s publishing: 20.03.2020
About authors:

V.S. Brigida1, Cand. Sci. (Eng.), Researcher, е-mail: 1z011@inbox.ru,
Kh.Kh. Kozhiev2, Dr. Sci. (Eng.), Professor,
A.A. Saryan1, Cand. Sci. (Econ.), Leading Researcher,
A.K. Dzhioeva2, Cand. Sci. (Eng.), Assistant Professor,
1 Sochi Research Center of Russian Academy of Sciences, 354000, Sochi, Russia,
2 North Caucasus Mining-and-Metallurgy Institute (State Technological University), 362021, Vladikavkaz, Republic of North Ossetia-Alania, Russia.

 

For contacts:

V.S. Brigida, е-mail: 1z011@inbox.ru.

Bibliography:

1. Ermakov A.Yu., Kachurin N. M., Senkus Val. V. Physical model and mathematical description of methane transfer in gas-adsorbing rock mass. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 5, pp. 81–88. [In Russ]. DOI: 10.25018/0236-1493-2018-5-0-81-88.

2. Stas' G. V., Kachurin N. M. Dynamics of methane emission into production face by mining thick flat-lying coal seams withfree-flowoutlet of upper layer. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2017, no 4, pp. 170–179. [In Russ].

3. Pak G.A., Drizhd N.A., Dolgonosov V. N. Main roof breakdown — gas-dynamic phenomena relation in coal mines. Ugol'. 2014, no 1, pp. 56–58. [In Russ].

4. Shubina E.A., Luk'yanov V. G. Problems in calculating gas-make in the operating panels in view of geomechanical and gas-dynamic processes, and methods to resolve them. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2015. Vol. 326, no 3, pp. 13–18. [In Russ].

5. Do N.A., Dias D., Dinh V. D., Tran T. T., Dao C. D., Dao V. D., Nguyen P. N. Behavior of noncircular tunnels excavated in stratified rock masses — Case of underground coal mines. Journal of Rock Mechanics and Geotechnical Engineering, 2019, Vol. 11, no 1, Pp. 99–110. DOI: 10.1016/j.jrmge.2018.05.005.

6. Do N.A., Dias D. A comparison of 2D and 3D numerical simulations of tunnelling in soft soils. Environmental Earth Sciences, 2019, Vol. 76, no 3, pp. 1–12. DOI: 10.1007/s12665-017-6425-z.

7. Do N.A., Dias D., Oreste P., Djeran-Maigre I. Wave three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotechnica, 2014, Vol. 9, no 4, pp 673–694. DOI: 10.1007/s11440-013-0279-7.

8. Komashchenko V. I., Atrushkevich V.A., Kachurin N. M., Stas' G. V. The effectiveness of borehole charges in the destruction of rocks by explosion. Ustoychivoe razvitie gornykh territoriy. 2019. Vol. 11, no 2(40), pp. 191–198. DOI: 10.21177/1998-4502-2019-11-2-191-198. [In Russ].

9. Golik V. I., Dmitrak Yu. V., Gabaraev O. Z., Kozhiev Kh. Kh. Minimizing the impact of mining on the environment. Ekologiya i promyshlennost' Rossii. 2018. Vol. 22, no 6, pp. 26–29. DOI: 10.18412/1816-0395-2018-6-26-29. [In Russ].

10. Atrushkevich V.A., Pepelev R. G. Parameter’s optimization of the sub-floor destruction system in the presence of an inclined ore contact with breeds. Ustoychivoe razvitie gornykh territoriy. 2019. Vol. 11, no 3(41), pp. 341–346. DOI: 10.21177/1998-4502-2019-11-3-341-346. [In Russ].

11. Golik V. I., Razorenov Yu. I., Luk'yanov V. G. Environmental and economic aspects of resource saving in mining. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017. Vol. 328, no 6, pp. 18–27. [In Russ].

12. Kon'shin B. F., Yuskov V. S. Improvement of efficiency in violation control of harmful emission standards by means of prediction using artificial neural network. Gornyy informatsionnoanaliticheskiy byulleten’. 2019, no 1, pp. 105—111. [In Russ]. DOI: 10.25018/0236-1493-201901-0-105-111.

13. Lopatukhin L. I., YAitskaya N.A. Data of wind field reanalysis over the caspian sea for calculating the regime of wind waves. Vodnye resursy. 2019. Vol. 46, no 6, pp. 598–604. [In Russ]. DOI: 10.31857/S0321-0596466598-604.

14. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 1996, Vol. 77, no 3, pp. 437–470.

15. Lopatoukhin L. I., Yaitskaya N.A. Wave climate of the caspian sea, input wind data for hydrodynamic modeling, and some calculation results. Oceanology, 2019, Vol. 59, no 1, pp. 7–16. DOI: 10.1134/S0001437019010120.

16. Lopatoukhin L. I., Yaitskaya N.A. Peculiarities of the approach to calculation of wind waves in the caspian sea. Russian Meteorology and Hydrology, 2018, Vol. 43, no 4, pp. 245–250. DOI: 10.3103/S1068373918040052.

17. Sorokin D. E., SHarafutdinov V. N., Onishchenko E. V. On the problems of strategic development of tourism in the regions of russia (case of the Krasnodar region and the resort city of Sochi). Ekonomika regiona. 2017. Vol. 13, no 3, pp. 764–776. DOI: 10.17059/2017-3-10.

18. Jina X., Qu M., Bao J. Impact of crisis events on Chinese outbound tourist flow. A framework for post-events growth. Tourism Management, 2019, Vol. 74, pp. 334–344. DOI: 10.1016/j. tourman.2019.04.011.

19. Shoval N., Kahani A., Cantis S., Ferrante M. Impact of incentives on tourist activity in space-time. Annals of Tourism Research, 2020, Vol. 80, 102846. DOI: 10.1016/j.annals.2019.102846.

20. Li Y., Wu S., Nie B., Ma Y. A new pattern of underground space-time Tridimensional gas drainage. A case study in Yuwu coal mine, China. Energy Science and Engineering, 2019, no 7, pp. 399–410.

21. Hua G., Liang Y., Baotang Sh., Qingdong Q., Junhua X. Mining-induced strata stress changes, fractures and gas flow dynamics in multi-seam longwall mining. International Journal of Rock Mechanics and Mining Sciences, 2012, no 54, pp. 129–139.

22. Pavlenko M. V., KHaydina M. P., Kuziev D.A., Pikhtorinskiy D., Muratov A. Z. Impacts of the combine harvester in the production of coal to increase methane recovery array in the workspace lava. Ugol'. 2019, no 4(1117), pp. 8–11. [In Russ]. DOI: 10.18796/0041-5790-2019-4-8-11.

23. Pavlenko M.V., Skopintseva O.V. Role of capillary forces in vibratory action on hydraulically treated gas-saturated coal. Gornyy informatsionno-analiticheskiy byulleten'. 2019;3:43-50. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-43-50.

24. Brigida V. S., Golik V. I., Dmitrak Yu. V., Gabaraev O. Z. Ensuring stability of undermining inclined drainage holes during intensive development of multiple gas-bearing coal layers. Zapiski Gornogo instituta. 2019. Vol. 239. pp. 497–501. [In Russ]. DOI: 10.31897/PMI.2019.5.497.

25. Cun Zh., Shihao T., Qingsheng B., Guanyu Y., Lei Zh. Evaluating pressure-relief mining performances based on surface gas venthole extraction data in longwall coal mines. Journal of Natural Gas Science and Engineering, 2015, no 24, pp. 431–440.

26. Brigida V. S., Zinchenko N. N. Methane release in drainage holes ahead of coal face. Journal of Mining Science, 2014, Vol. 50, no 5, pp. 994–1000. DOI: 10.1134/S1062739114010098.

27. Qingdong Q., Jialin X., RenlunW., Wei Q., Guozhong H. Three-zone characterization of coupled strata and gas behavior in multi-seam mining. International Journal of Rock Mechanics and Mining Sciences, 2015, no 78, pp. 91–98.

28. Brigida V. S., Dmitrak YU. V., Gabaraev O. Z., Golik V. I. Use of destressing drilling to ensure safety of Donbass gas-bearing coal seams extraction. Bezopasnost' truda v promyshlennosti. 2019, no 3(747), pp. 7–11. [In Russ]. DOI: 10.24000/0409-2961-2019-3-7-11.

29. William S. C. Visualizing Data. Summit: Hobart Press, 1993. 360 p.

30. Renka R. J., Renka R. L., Cline A. K. А triangle-based c¹ interpolation method. Rocky Mountain Journal of Mathematics, 1984, Vol. 14, no 1, pp. 223–237. [In Russ].

Subscribe for our dispatch